A349718 Number of spanning trees in the n X n grid graph where rotations and reflections are not counted as distinct.
1, 1, 28, 12600, 69699849, 4070693024640, 2484046163254367574, 15778915364062895746351104, 1040828457711477326843036225608036, 711789875509887224494712166194197254144000, 5040627715175514814159607456023227379139001458908168
Offset: 1
Keywords
Examples
While there are 192 mazes on a 3 X 3 grid, only a(3) = 28 are distinct mod rotations and reflections. 21 are asymmetric: _____ _____ _____ _____ _____ _____ _____ _____ | | | | | | | _| | _| | _| | _| | _| | | |_| | |_| | | |_|_| | | | | | _| | |_ | | |_ | | |_ _| |_|_ _| |_ _|_| |_ _ _| |_|_|_| |_|_ _| |_ _|_| |_|_ _| |_ _ _| _____ _____ _____ _____ _____ _____ _____ _____ | _| | _| | _| | _| | _| | _ | | _ | | _ | |_| | |_| _| |_|_ | | | | | | |_| | |_ | | |_ |_| |_ _| | |_ _|_| |_ _ _| |_ _ _| |_|_ _| |_ _ _| |_ _|_| |_ _ _| |_ _ _| _____ _____ _____ _____ _____ | _ _| | _ _| |_ _| |_ _| |_ _| |_ | |_ _| | _| | _ | | | | |_ _|_| |_ _ _| |_|_ _| |_ _|_| |_|_ _| . 5 have 2-way symmetry: _____ _____ _____ _____ _____ | | | | | _| | _ _| |_ _| | | | | |_| |_| |_| | | |_ _ | | | |_|_|_| |_ _ _| |_ _ _| |_ _ _| |_|_|_| . 2 have 4-way symmetry: _____ _____ |_ _| |_ | | |_ _| | _| |_ _ _| |_|_ _|
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..40
- Andrew Howroyd, PARI program using Kirchhoff's Matrix Tree Theorem, 2021.
- Paul Kim, Intelligent Maze Generation, Doctoral dissertation, Ohio State University, 2019.
- Mike Koss, Maze Canvas, Open source unique maze generator, 2021.
- Eric Weisstein's World of Mathematics, Grid Graph
- Eric Weisstein's World of Mathematics, Spanning Tree
- Wikipedia, Burnside's_lemma, Kirchhoff's_theorem
Programs
-
PARI
\\ See link. - Andrew Howroyd, Nov 27 2021
Formula
Extensions
Terms a(7) and beyond from Andrew Howroyd, Nov 27 2021
Comments