A349726 Numbers k >= 1 such that A018804(k) divided by A000203(k) is an integer.
1, 2, 40, 44, 220, 252, 752, 980, 2940, 3680, 4508, 10080, 10780, 11016, 12224, 14432, 16072, 17384, 26096, 26216, 36672, 36848, 44064, 45792, 55080, 60588, 61120, 64288, 72160, 80360, 82656, 85536, 88396, 88944, 93568, 95256, 112000, 112572, 120320, 134464, 144752
Offset: 1
Keywords
Examples
k = 40 : A018804(40) = 180, A000203(40) = 90, 180/90 = 2 thus 40 is a term.
Programs
-
Mathematica
A018804[n_]:=Apply[Times,Apply[((#1-1)#2/#1+1)#1^#2&,FactorInteger[n],{1}]]; (* After Amiram Eldar in A018804 *) upto=10^5;Reap[Do[If[IntegerQ[A018804[k]/DivisorSigma[1,k]],Sow[k]],{k,upto}]][[-1,-1]] (* Paolo Xausa, Aug 18 2022 *)
-
PARI
isok(k) = (sumdiv(k, d, k*eulerphi(d)/d) % sigma(k)) == 0; \\ Michel Marcus, Nov 27 2021
Extensions
a(12)-a(36) from Paolo Xausa, Nov 27 2021
More terms from Amiram Eldar, Nov 27 2021