cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349739 Number of ordered pairs of commuting elements (partial permutations) in the symmetric inverse semigroup on [n].

Original entry on oeis.org

1, 4, 31, 310, 3925, 58936, 1032979, 20600266, 461742985
Offset: 0

Views

Author

Geoffrey Critzer, Dec 19 2021

Keywords

References

  • Stephen Lipscomb, Symmetric Inverse Semigroups, Mathematical Surveys and Monographs, Volume 46, 1996, Chapters 3,4,5.

Crossrefs

Cf. A002720, A000712 (number of conjugacy classes).

Programs

  • Mathematica
    x[list_] := If[list == {}, 1, Apply[Times, list] Apply[Times,  Table[Count[list, i]!, {i, 1, Max[list]}]]]; y[list_] := If[list == {}, 1, Apply[Times,Table[Count[list, i]!, {i, 1, Max[list]}]]];
    c[n_, pair_] := n!/(x[pair[[1]]] y[pair[[2]]]); n[k_, list_] := Count[list, k];
    m[k_, list_] := Sum[Binomial[n[k, list], j]^2 j! k^j, {j, 0, n[k, list]}];
    xp[list_] := Apply[Times, Table[m[k, list], {k, 1, Max[{1, list}]}]];
    partialPermMatrices1[n_] := Module[{im = PadRight[IdentityMatrix[n], {n + 1, n}]},
      Sort@Map[Extract[im, List /@ #] &]@ Permutations[Join[ConstantArray[n + 1, n], Range@n], {n}]]; s[list_] := Total[Map[Apply[Times, #] &,Map[Min, Map[list[[#]] &, Map[Position[#, 1] &, partialPermMatrices1[Length[list]]], {2}], {2}]]]; Table[(Map[s,Level[Table[Level[Table[Table[{IntegerPartitions[nn - k][[i]],     IntegerPartitions[k][[j]]}, {i, 1,PartitionsP[nn - k]}], {j, 1,PartitionsP[k]}], {2}], {k,0, nn}], {2}][[All, 2]]])*(Map[xp, Level[Table[ Level[Table[Table[{IntegerPartitions[nn - k][[i]], IntegerPartitions[k][[j]]}, {i, 1, PartitionsP[nn - k]}], {j, 1, PartitionsP[k]}], {2}], {k, 0, nn}], {2}][[All, 1]]])*(Map[c[nn, #] &,Level[Table[Level[Table[Table[{IntegerPartitions[nn - k][[i]],IntegerPartitions[k][[j]]}, {i, 1, PartitionsP[nn - k]}], {j, 1,PartitionsP[k]}], {2}], {k, 0, nn}], {2}]]) // Total, {nn, 0, 7}]