A349767 Numbers m such that 2^m - m is divisible by 5.
3, 14, 16, 17, 23, 34, 36, 37, 43, 54, 56, 57, 63, 74, 76, 77, 83, 94, 96, 97, 103, 114, 116, 117, 123, 134, 136, 137, 143, 154, 156, 157, 163, 174, 176, 177, 183, 194, 196, 197, 203, 214, 216, 217, 223, 234, 236, 237, 243, 254, 256, 257, 263, 274, 276, 277, 283, 294, 296, 297, 303
Offset: 1
Keywords
References
- Michael Doob, The Canadian Mathematical Olympiad & L'Olympiade Mathématique du Canada 1969-1993, Canadian Mathematical Society & Société Mathématique du Canada, Problem 4, 1983, page 158, 1993.
Links
- The IMO Compendium, Problem 4, 15th Canadian Mathematical Olympiad 1983.
- Index to sequences related to Olympiads.
Crossrefs
Programs
-
Maple
filter:= n -> 2^n-n mod 5 = 0 : select(filter, [$1..400]);
-
Mathematica
Select[Range[300], PowerMod[2, #, 5] == Mod[#, 5] &] (* Amiram Eldar, Dec 10 2021 *)
-
PARI
isok(m) = Mod(2, 5)^m == Mod(m, 5); \\ Michel Marcus, Dec 10 2021
-
Python
def ok(n): return pow(2, n, 5) == n%5 print([k for k in range(357) if ok(k)]) # Michael S. Branicky, Dec 10 2021
Comments