A349776 Triangle read by rows: T(n,k) is the number of partitions of set [n] into a set of at most k lists, with 0 <= k <= n. Also called broken permutations.
1, 0, 1, 0, 2, 3, 0, 6, 12, 13, 0, 24, 60, 72, 73, 0, 120, 360, 480, 500, 501, 0, 720, 2520, 3720, 4020, 4050, 4051, 0, 5040, 20160, 32760, 36960, 37590, 37632, 37633, 0, 40320, 181440, 322560, 381360, 393120, 394296, 394352, 394353
Offset: 0
Examples
For n=3 the T(3, 2)=12 broken permutations are {(1, 2, 3)}, {(1, 3, 2)}, {(2, 1, 3)}, {(2, 3, 1)}, {(3, 1, 2)}, {(3, 2, 1)}, {(1, 2), (3)}, {(2, 1), (3)}, {(1, 3), (2)}, {(3, 1), (2)}, {(2, 3), (1)}, {(3, 2), (1)}. If you add the set of 3 lists {(1), (2), (3)}, you get T(3, 3) = 13 = A000262(3). Triangle begins: 1; 0, 1; 0, 2, 3; 0, 6, 12, 13; 0, 24, 60, 72, 73; 0, 120, 360, 480, 500, 501; 0, 720, 2520, 3720, 4020, 4050, 4051; ...
References
- Kenneth P. Bogart, Combinatorics Through Guided Discovery, Kenneth P. Bogart, 2004, 57-58.
Links
- David Callan, Sets, Lists and Noncrossing Partitions, arXiv:0711.4841 [math.CO], 2007-2008. Also Sets, Lists and Noncrossing Partitions, Journal of Integer Sequences, Vol. 11 (2008), Article 08.1.3.
- Wikipedia, The twentyfold way
Crossrefs
Programs
-
Maple
T:= proc(n, k) option remember; `if`(k<0, 0, binomial(n-1, k-1)*n!/k! +T(n, k-1)) end: seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Dec 01 2021
-
Mathematica
T[n_, k_] := Sum[Binomial[n-1, n-j] n!/j!, {j, 0, k}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 27 2023 *)
-
PARI
Lah(n, k) = if (n==0, 1, binomial(n-1, k-1)*n!/k!); \\ A271703 T(n, k) = sum(j=0, k, Lah(n, j)); \\ Michel Marcus, Nov 30 2021
-
SageMath
def T(n, k): return sum(binomial(n, i)*falling_factorial(n-1, n-i) for i in (0..k)) print([[T(n, k) for k in (0..n)] for n in (0..9)]) # Peter Luschny, Dec 01 2021
Formula
T(n, k) = Sum_{j=0..k} A271703(n, j) for n >= 0.
T(n, n) = A000262(n).
T(n, k) = Sum_{j=0..k} binomial(n-1, n-j)*n!/j!.
T(n, k) = A000262(n) - A271703(n, k + 1) * hypergeom([1, k - n + 1], [k + 1, k + 2], -1). - Peter Luschny, Nov 30 2021
|Sum_{k=0..n} (-1)^k * T(n,k)| = A096965(n). - Alois P. Heinz, Dec 01 2021
Comments