cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349802 Triangle read by rows: T(n,k) is the number of binary Lyndon words of length n that begin with exactly k 0's. 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 2, 2, 1, 1, 0, 0, 2, 3, 2, 1, 1, 0, 0, 4, 6, 4, 2, 1, 1, 0, 0, 5, 10, 7, 4, 2, 1, 1, 0, 0, 8, 18, 14, 8, 4, 2, 1, 1, 0, 0, 11, 31, 26, 15, 8, 4, 2, 1, 1, 0, 0, 18, 56, 50, 30, 16, 8, 4, 2, 1, 1, 0
Offset: 0

Views

Author

Peter Kagey, Nov 30 2021

Keywords

Comments

Rows sum to A001037.
Conjecture: The Euler transform of column k=1 gives the Fibonacci numbers, the Euler transform of column k=2 gives the tribonacci numbers (A000073), and more generally, the Euler transform of column k >= 1 gives the (k+1)-bonacci numbers (A048887).

Examples

			For n = 6, the values correspond to the following Lyndon words:
T(6,1) = 2 via 010111 and 011111;
T(6,2) = 3 via 001011, 001101, and 001111;
T(6,3) = 2 via 000101 and 000111;
T(6,4) = 1 via 000011; and
T(6,5) = 1 via 000001.
Table begins:
n\k | 0  1   2   3  4  5  6  7  8  9
----+------------------------------------
  0 | 1
  1 | 1, 1
  2 | 0, 1,  0
  3 | 0, 1,  1,  0
  4 | 0, 1,  1,  1, 0
  5 | 0, 2,  2,  1, 1, 0
  6 | 0, 2,  3,  2, 1, 1, 0
  7 | 0, 4,  6,  4, 2, 1, 1, 0
  8 | 0, 5, 10,  7, 4, 2, 1, 1, 0
  9 | 0, 8, 18, 14, 8, 4, 2, 1, 1, 0
  ...
		

Crossrefs

Programs

  • PARI
    B(k,n)=my(g=1/(1 - x*(1-x^k)/(1-x))); Vec(1 + sum(j=1, n, moebius(j)/j * log(subst(g + O(x*x^(n\j)), x, x^j))))
    A(n,m)={my(M=Mat(vector(m, k, Col(B(k,n) - B(k-1,n))))); M[1,1]=M[2,2]=1; M}
    { my(M=A(10,10)); for(n=1, #M, print(M[n,1..n])) } \\ Andrew Howroyd, Dec 05 2021

Formula

T(n,n) = 0 for n >= 2.
T(n,n-1) = 1 for n >= 1.
T(n,n-m) = 2^(m-2) for n >= 2*m - 1 and m >= 2.