A349812 Triangle read by rows: row 1 is [1]; for n >= 1, row n gives coefficients of expansion of (-1/x + x)*(1/x + 1 + x)^(n-1) in order of increasing powers of x.
1, -1, 0, 1, -1, -1, 0, 1, 1, -1, -2, -2, 0, 2, 2, 1, -1, -3, -5, -4, 0, 4, 5, 3, 1, -1, -4, -9, -12, -9, 0, 9, 12, 9, 4, 1, -1, -5, -14, -25, -30, -21, 0, 21, 30, 25, 14, 5, 1, -1, -6, -20, -44, -69, -76, -51, 0, 51, 76, 69, 44, 20, 6, 1, -1, -7, -27, -70, -133, -189, -196, -127, 0, 127, 196, 189, 133, 70, 27, 7, 1
Offset: 0
Examples
Triangle begins: 1; -1, 0, 1; -1, -1, 0, 1, 1; -1, -2, -2, 0, 2, 2, 1; -1, -3, -5, -4, 0, 4, 5, 3, 1; -1, -4, -9, -12, -9, 0, 9, 12, 9, 4, 1; -1, -5, -14, -25, -30, -21, 0, 21, 30, 25, 14, 5, 1; -1, -6, -20, -44, -69, -76, -51, 0, 51, 76, 69, 44, 20, 6, 1; -1, -7, -27, -70, -133, -189, -196, -127, 0, 127, 196, 189, 133, 70, 27, 7, 1; ...
Links
- Jack Ramsay, On Arithmetical Triangles, The Pulse of Long Island, June 1965 [Mentions application to design of antenna arrays. Annotated scan.]
Crossrefs
Programs
-
Maple
t1:=-1/x+x; m:=1/x+1+x; lprint([1]); for n from 1 to 12 do w1:=expand(t1*m^(n-1)); w3:=expand(x^n*w1); w4:=series(w3,x,2*n+1); w5:=seriestolist(w4); lprint(w5); od:
Comments