A349813 Triangle read by rows: row 1 is [3]; for n >= 1, row n gives coefficients of expansion of (-3 - x + x^2 + 3*x^3)*(1 + x + x^2 + x^3)^(n-1) in order of increasing powers of x.
3, -3, -1, 1, 3, -3, -4, -3, 0, 3, 4, 3, -3, -7, -10, -10, -4, 4, 10, 10, 7, 3, -3, -10, -20, -30, -31, -20, 0, 20, 31, 30, 20, 10, 3, -3, -13, -33, -63, -91, -101, -81, -31, 31, 81, 101, 91, 63, 33, 13, 3, -3, -16, -49, -112, -200, -288, -336, -304, -182, 0, 182, 304, 336, 288, 200, 112, 49, 16, 3
Offset: 0
Examples
Triangle begins: 3; -3, -1, 1, 3; -3, -4, -3, 0, 3, 4, 3; -3, -7, -10, -10, -4, 4, 10, 10, 7, 3; -3, -10, -20, -30, -31, -20, 0, 20, 31, 30, 20, 10, 3; -3, -13, -33, -63, -91, -101, -81, -31, 31, 81, 101, 91, 63, 33, 13, 3; ...
Links
- Jack Ramsay, On Arithmetical Triangles, The Pulse of Long Island, June 1965 [Mentions application to design of antenna arrays. Annotated scan.]
Crossrefs
Programs
-
Maple
t1:=-3-x+x^2+3*x^3; m:=1+x+x^2+x^3; lprint([3]); for n from 1 to 12 do w1:=expand(t1*m^(n-1)); w4:=series(w1,x,3*n+1); w5:=seriestolist(w4); lprint(w5); od:
Comments