cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A349819 Central column (ignoring the zeros) of A349813, or leading entries in rows of A349814.

Original entry on oeis.org

3, 1, 3, 4, 20, 31, 182, 304, 1932, 3364, 22407, 40044, 275132, 500522, 3515564, 6478784, 46260604, 86094668, 622636764, 1167752848, 8531618640, 16100882359, 118615471982, 225001039696, 1669094344820, 3179713880524, 23725950404610, 45364387834120, 340192536782760
Offset: 0

Views

Author

N. J. A. Sloane, Dec 24 2021

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 3, polcoef((-3 - x + x^2 + 3*x^3)*(1 + x + x^2 + x^3)^(n-1), 3*n\2+1)) \\ Andrew Howroyd, Feb 28 2023

Formula

a(n) = [x^floor(3*n/2+1)](-3 - x + x^2 + 3*x^3)*(1 + x + x^2 + x^3)^(n-1) for n > 0. - Andrew Howroyd, Feb 28 2023

Extensions

Offset corrected and terms a(21) and beyond from Andrew Howroyd, Feb 28 2023

A349813 Triangle read by rows: row 1 is [3]; for n >= 1, row n gives coefficients of expansion of (-3 - x + x^2 + 3*x^3)*(1 + x + x^2 + x^3)^(n-1) in order of increasing powers of x.

Original entry on oeis.org

3, -3, -1, 1, 3, -3, -4, -3, 0, 3, 4, 3, -3, -7, -10, -10, -4, 4, 10, 10, 7, 3, -3, -10, -20, -30, -31, -20, 0, 20, 31, 30, 20, 10, 3, -3, -13, -33, -63, -91, -101, -81, -31, 31, 81, 101, 91, 63, 33, 13, 3, -3, -16, -49, -112, -200, -288, -336, -304, -182, 0, 182, 304, 336, 288, 200, 112, 49, 16, 3
Offset: 0

Views

Author

N. J. A. Sloane, Dec 23 2021

Keywords

Comments

The row polynomials can be further factorized, since -3 - x + x^2 + 3*x^3 = -(1-x)*(3 + 4*x + 3*x^2) and 1 + x + x^2 + x^3 = (1+x)*(1+x^2).
The rule for constructing this triangle (ignoring row 0) is the same as that for A008287: each number is the sum of the four numbers immediately above it in the previous row. Here row 1 is [-3, -1, 1, 3] instead of [1, 1, 1, 1].

Examples

			Triangle begins:
   3;
  -3,  -1,   1,   3;
  -3,  -4,  -3,   0,   3,    4,   3;
  -3,  -7, -10, -10,  -4,    4,  10,  10,  7,  3;
  -3, -10, -20, -30, -31,  -20,   0,  20, 31, 30,  20, 10,  3;
  -3, -13, -33, -63, -91, -101, -81, -31, 31, 81, 101, 91, 63, 33, 13, 3;
  ...
		

Crossrefs

The right half of the triangle gives A349814.

Programs

  • Maple
    t1:=-3-x+x^2+3*x^3;
    m:=1+x+x^2+x^3;
    lprint([3]);
    for n from 1 to 12 do
    w1:=expand(t1*m^(n-1));
    w4:=series(w1,x,3*n+1);
    w5:=seriestolist(w4);
    lprint(w5);
    od:
Showing 1-2 of 2 results.