A349873 Smallest odd value such that any Collatz trajectory in which it occurs contains exactly n odd values other than '1'.
21, 3, 69, 45, 15, 9, 51, 33, 87, 57, 39, 105, 135, 363, 123, 339, 219, 159, 393, 519, 681, 897, 603, 111, 297, 1581, 1053, 351, 933, 621, 207, 549, 183, 243, 645, 429, 285, 189, 63, 165, 27, 147, 195, 129, 171, 231, 609, 411, 543, 1449, 975, 327, 873, 1185, 1527, 1017
Offset: 1
Keywords
Examples
a(1)=21 as 21 occurs solely in Collatz trajectories starting with 21*2^k, and these trajectories all contain one single odd value other than 1. No value smaller than 21 satisfies these requirements. In particular, a(1) does not equal 5 since 5 is part of Collatz trajectories that contain multiple odd values other than 1 (e.g., ...,13,40,20,10,5,16,8,4,2,1). a(2)=3 as 3 occurs solely in Collatz trajectories starting with 3*2^k, and these trajectories all contain exactly two odd values other than 1 (namely 3 and 5).
Programs
-
PARI
oddsteps(n)={my(s=0); while(n!=1, if(n%2,n=(3*n+1);s++); n/=2); s} a(n)={forstep(k=3, oo, 6, if(oddsteps(k)==n, return(k)))} \\ Andrew Howroyd, Dec 19 2021
-
PARI
oddsteps(n)=my(s); while(n>1, n+=n>>1+1; if(!bitand(n,1), n >>= valuation(n,2)); s++); s first(n)=my(v=vector(n),r=n,t); forstep(k=3,oo,2, t=oddsteps(k); if(t<=n && v[t]==0, v[t]=k; if(r-- == 0, return(v)))) \\ Charles R Greathouse IV, Dec 22 2021
Formula
a(n) mod 6 = 3 for all n>0. The odd multiples of 3 form the 'Garden-of-Eden' set (terms without a predecessor) under iterations of the reduced Collatz function A075677.
Comments