cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A349893 a(n) = Sum_{k=0..n} k^(k*(n-k)).

Original entry on oeis.org

1, 2, 3, 7, 46, 1052, 88603, 27121965, 37004504306, 198705527223758, 5595513387083114571, 686714367475480207331583, 468422339816915120237104999422, 1664212116512828935888786624225704856, 31295654819650678010096952493864470025103251
Offset: 0

Views

Author

Seiichi Manyama, Dec 04 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[1 + Sum[k^(k*(n - k)), {k, 1, n}], {n, 0, 16}] (* Vaclav Kotesovec, Dec 05 2021 *)
  • PARI
    a(n) = sum(k=0, n, k^(k*(n-k)));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, x^k/(1-k^k*x)))

Formula

G.f.: Sum_{k>=0} x^k/(1 - k^k * x).
log(a(n)) ~ n^2*log(n)/4 * (1 - log(2)/log(n) + 1/(4*log(n)^2)). - Vaclav Kotesovec, Dec 05 2021

A234568 Sum_{k=0..n} (n-k)^(2*k).

Original entry on oeis.org

1, 1, 2, 6, 27, 163, 1268, 12344, 145653, 2036149, 33192790, 622384730, 13263528351, 318121600695, 8517247764136, 252725694989612, 8258153081400857, 295515712276222953, 11523986940937975402, 487562536078882116718, 22291094729329088403299, 1097336766599161926448779
Offset: 0

Views

Author

Paul D. Hanna, Dec 28 2013

Keywords

Examples

			O.g.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 27*x^4 + 163*x^5 + 1268*x^6 +...
O.g.f.: A(x) = 1 + x/(1-x) + x^2/(1-4*x) + x^3/(1-9*x) + x^4/(1-16*x) +...
E.g.f.: E(x) = 1 + x + 2*x^2/2! + 6*x^3/3! + 27*x^4/4! + 163*x^5/5! +...
where the e.g.f. is a series involving iterated integration:
E(x) = 1 + Integral exp(x) dx + Integral^2 exp(4*x) dx^2 + Integral^3 exp(9*x) dx^3 + Integral^4 exp(16*x) dx^4 +...
		

Crossrefs

Programs

  • Mathematica
    Flatten[{1,Table[Sum[(n-k)^(2*k),{k,0,n}],{n,1,20}]}] (* Vaclav Kotesovec, Feb 23 2014 *)
  • PARI
    a(n)=sum(k=0, n, (n-k)^(2*k))
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    /* From o.g.f. Sum_{n>=0} x^n/(1-n^2*x): */
    {a(n)=polcoeff(sum(m=0, n, x^m/(1-m^2*x+x*O(x^n))), n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    /* From e.g.f. involving iterated integration: */
    INTEGRATE(n,F)=local(G=F);for(i=1,n,G=intformal(G));G
    a(n)=my(A=1+x);A=1+sum(k=1,n,INTEGRATE(k,exp(k^2*x+x*O(x^n))));n!*polcoeff(A,n)
    for(n=0,20,print1(a(n),", ")) \\ Paul D. Hanna, Dec 28 2013

Formula

O.g.f.: Sum_{n>=0} x^n / (1 - n^2*x).
E.g.f.: Sum_{n>=0} Integral^n exp(n^2*x) dx^n, where integral^n F(x) dx^n is the n-th integration of F(x) with no constant of integration.
a(n) ~ sqrt(Pi) * (n/LambertW(exp(1)*n))^(1/2 + 2*n - 2*n/LambertW(exp(1)*n)) / sqrt(1 + LambertW(exp(1)*n)). - Vaclav Kotesovec, Dec 04 2021

A356673 a(n) = n! * Sum_{k=0..n} k^(3*(n-k))/k!.

Original entry on oeis.org

1, 1, 3, 31, 901, 45741, 3960871, 584698843, 130554106761, 40790044059481, 17681098707667531, 10491554658622447191, 8198225417359164798733, 8172446419302496167191941, 10264848632098736708582150511
Offset: 0

Views

Author

Seiichi Manyama, Aug 22 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, k^(3*(n-k))/k!);
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, x^k/(k!*(1-k^3*x)))))

Formula

E.g.f: Sum_{k>=0} x^k / (k! * (1 - k^3 * x)).

A349881 Expansion of Sum_{k>=0} x^k/(1 - k^4 * x).

Original entry on oeis.org

1, 1, 2, 18, 339, 10915, 663140, 61264436, 8044351557, 1536980041573, 402558463751974, 137204787854813174, 60668198155262809815, 34351266752678243067591, 24185207999807747975188552, 20842786946335533698574605528
Offset: 0

Views

Author

Seiichi Manyama, Dec 03 2021

Keywords

Comments

In general, for t>=1 and s>=0, Sum_{k=0..n} k^(t*(n-k)+s) ~ sqrt(2*Pi) * ((n + s/t)/LambertW(exp(1)*(n + s/t)))^(1/2 + (t*n + s) * (1 - 1/LambertW(exp(1)*(n + s/t)))) / sqrt(t*(1 + LambertW(exp(1)*(n + s/t)))). - Vaclav Kotesovec, Dec 04 2021

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[If[k == n - k == 0, 1, k^(4*(n - k))], {k, 0, n}]; Array[a, 16, 0] (* Amiram Eldar, Dec 04 2021 *)
  • PARI
    a(n, s=0, t=4) = sum(k=0, n, k^(t*(n-k)+s));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, x^k/(1-k^4*x)))

Formula

a(n) = Sum_{k=0..n} k^(4*(n-k)).
a(n) ~ sqrt(Pi/2) * (n/LambertW(exp(1)*n))^(1/2 + 4*n - 4*n/LambertW(exp(1)*n)) / sqrt(1 + LambertW(exp(1)*n)). - Vaclav Kotesovec, Dec 04 2021

A358687 a(n) = n! * Sum_{k=0..n} k^(3 * (n-k)) / (n-k)!.

Original entry on oeis.org

1, 1, 4, 57, 1444, 61785, 4050126, 373648513, 47101090744, 7764843893265, 1630744323319450, 426925697290933401, 136591846585403311620, 52602030074554601172649, 24058544668572618782040022, 12916480280574798627072144465
Offset: 0

Views

Author

Seiichi Manyama, Nov 26 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[n! * Sum[k^(3*(n-k))/(n-k)!, {k, 0, n}], {n, 1, 20}]] (* Vaclav Kotesovec, Nov 27 2022 *)
  • PARI
    a(n) = n!*sum(k=0, n, k^(3*(n-k))/(n-k)!);
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, x^k*exp(x)^k^3)))
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, k!*x^k/(1-k^3*x)^(k+1)))

Formula

E.g.f.: Sum_{k>=0} x^k * exp(k^3 * x).
G.f.: Sum_{k>=0} k! * x^k / (1 - k^3 * x)^(k+1).
log(a(n)) ~ (6*n*(log(n) - 1) + 3*log(1 + LambertW(n^(2/3))) + 2*n*LambertW(n^(2/3)) * (7*log(n) - 6*log(1 + LambertW(n^(2/3))) + 3*LambertW(n^(2/3)))) / (6*(1 + LambertW(n^(2/3)))). - Vaclav Kotesovec, Nov 27 2022
Showing 1-5 of 5 results.