A349912 Sum of A336466 and its Dirichlet inverse, where A336466 is fully multiplicative with a(p) = oddpart(p-1).
2, 0, 0, 1, 0, 2, 0, 1, 1, 2, 0, 1, 0, 6, 2, 1, 0, 1, 0, 1, 6, 10, 0, 1, 1, 6, 1, 3, 0, 0, 0, 1, 10, 2, 6, 1, 0, 18, 6, 1, 0, 0, 0, 5, 1, 22, 0, 1, 9, 1, 2, 3, 0, 1, 10, 3, 18, 14, 0, 1, 0, 30, 3, 1, 6, 0, 0, 1, 22, 0, 0, 1, 0, 18, 1, 9, 30, 0, 0, 1, 1, 10, 0, 3, 2, 42, 14, 5, 0, 1, 18, 11, 30, 46, 18, 1, 0, 9, 5, 1
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
Programs
-
Mathematica
f[p_, e_] := ((p-1)/2^IntegerExponent[p-1, 2])^e; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; sinv[1] = 1; sinv[n_] := sinv[n] = -DivisorSum[n, sinv[#] * s[n/#] &, # < n &]; a[n_] := s[n] + sinv[n]; Array[a, 100] (* Amiram Eldar, Dec 08 2021 *)
-
PARI
A000265(n) = (n>>valuation(n,2)); A336466(n) = { my(f=factor(n)); prod(k=1,#f~,A000265(f[k,1]-1)^f[k,2]); }; memoA349911 = Map(); A349911(n) = if(1==n,1,my(v); if(mapisdefined(memoA349911,n,&v), v, v = -sumdiv(n,d,if(d
A336466(n/d)*A349911(d),0)); mapput(memoA349911,n,v); (v))); A349912(n) = (A336466(n)+A349911(n));