cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349949 a(n) is the number of divisors of n that are 1 above or 1 below a divisor of either n+1 or n-1.

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 4, 3, 2, 2, 2, 3, 3, 2, 2, 4, 3, 2, 3, 3, 2, 2, 2, 3, 3, 2, 4, 4, 2, 2, 3, 3, 2, 2, 2, 3, 4, 2, 2, 4, 3, 2, 3, 3, 2, 3, 3, 3, 3, 2, 2, 2, 2, 2, 5, 4, 3, 3, 2, 3, 3, 2, 2, 2, 2, 2, 4, 3, 3, 3, 2, 5, 4, 2, 2, 4, 3, 2, 3, 3
Offset: 2

Views

Author

Tejo Vrush, Dec 06 2021

Keywords

Examples

			a(2) = 1 because 2 and 0 are not divisors of either 1 or 3, but 3 = 2+1 is a divisor of 3.
a(6) = 2 since the divisors of 6 are 1, 2, 3, and 6; those of 5 are 1 and 5; those of 7 are 1 and 7; and, regarding {1, 5, 7}, neither 1-1 = 0 nor 1+1 = 2 are in the set, neither 3-1 = 2 nor 3+1 = 4 is, but 2-1 = 1 is, and 6-1 = 5 is (as is 6+1 = 7).
		

Crossrefs

Cf. A000005.

Programs

  • Mathematica
    Table[DivisorSum[n, 1 &, If[# == 1, Or[Mod[n - 1, # + 1] == 0, Mod[n + 1, # + 1] == 0], AnyTrue[# + {-1, 1}, Or[Mod[n - 1, #] == 0, Mod[n + 1, #] == 0] &]] &], {n, 2, 88}] (* Michael De Vlieger, Dec 06 2021 *)
  • PARI
    a(n) = my(sd=setunion(divisors(n-1), divisors(n+1))); sumdiv(n, d, (vecsearch(sd, d-1)>0) || (vecsearch(sd, d+1)>0)); \\ Michel Marcus, Dec 07 2021
  • Python
    from sympy import divisors
    def aupton(nn):
        alst, prevdivs, divs, nextdivs = [], set(), {1}, {1, 2}
        for n in range(2, nn+1):
            prevdivs, divs, nextdivs = divs, nextdivs, set(divisors(n+1))
            neighdivs = prevdivs | nextdivs
            an = sum(1 for d in divs if {d-1, d+1} & neighdivs != set())
            alst.append(an)
        return alst
    print(aupton(88)) # Michael S. Branicky, Dec 06 2021
    
  • Python
    def A349949(n): return sum(1 for m in filter(lambda d:not (((n-1) % (d-1) if d > 1 else True) and (n-1) % (d+1) and ((n+1) % (d-1) if d > 1 else True) and (n+1) % (d+1)), divisors(n,generator=True))) # Chai Wah Wu, Dec 30 2021
    

Formula

a(p) = 2 for odd prime p. - Chai Wah Wu, Dec 30 2021

Extensions

a(6), a(12), a(14), a(18) corrected and a(31) and beyond from Michael S. Branicky, Dec 06 2021