A350654 Smallest k such that A349949(k) = n, or -1 if no such k exists.
2, 3, 8, 15, 63, 120, 440, 945, 2079, 4095, 21735, 98175, 133056, 395199, 338625, 1890945, 3501576, 8390304, 35820225, 126775935, 149848335, 879207616, 302464800
Offset: 1
Programs
-
PARI
f(n) = my(sd=setunion(divisors(n-1), divisors(n+1))); sumdiv(n, d, (vecsearch(sd, d-1)>0) || (vecsearch(sd, d+1)>0)); \\ A349949 a(n) = my(k=2); while (f(k) != n, k++); k; \\ Michel Marcus, Jan 10 2022
-
Python
from itertools import count from sympy import divisors def A350654(n): for m in count(2): c = 0 for d in divisors(m,generator=True): if not (((m-1) % (d-1) if d > 1 else True) and (m-1) % (d+1) and ((m+1) % (d-1) if d > 1 else True) and (m+1) % (d+1)): c += 1 if c > n: break if c == n: return m # Chai Wah Wu, Jan 12 2022
Extensions
a(11)-a(19) from Jinyuan Wang, Jan 10 2022
Escape clause value changed to -1 by N. J. A. Sloane, Jan 12 2022
a(20)-a(21) from Chai Wah Wu, Jan 12 2022
a(22)-a(23) from Chai Wah Wu, Jan 13 2022
Comments