cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A347913 a(n) is the number of multisets of integers that are possible to reach by starting with n occurrences of 0 and by splitting. Splitting is taking 2 occurrences of the same integer and incrementing one of them by 1 and decrementing the other occurrence by 1.

Original entry on oeis.org

1, 1, 2, 2, 7, 9, 29, 47, 144, 264, 747, 1531, 4147, 9063, 23744, 54522, 140223, 332033, 845111, 2045007, 5176880, 12713772, 32115727, 79676437, 201227865, 502852973
Offset: 0

Views

Author

Tejo Vrush, Oct 07 2021

Keywords

Comments

If the limit of a(n+1)/a(n) exists, then it is contained in the closed interval [2,6.75]. See Links for proof. Reverse splitting is defined in A348532.

Examples

			For n = 5, the multisets are as follows:
  {{0,0,0,0,0}}   {{-1,0,0,0,1}}   {{-1,-1,0,1,1}}
  {{-1,-1,0,0,2}} {{-1,-1,-1,1,2}} {{-2,0,0,1,1}}
  {{-2,0,0,0,2}}  {{-2,-1,1,1,1}}  {{-2,-1,0,1,2}}
Therefore, a(5) = 9.
For n = 6, the multisets are as follows:
  {{0,0,0,0,0,0}}    {{-1,0,0,0,0,1}}   {{-1,-1,0,0,1,1}}
  {{-1,-1,0,0,0,2}}  {{-1,-1,-1,1,1,1}} {{-1,-1,-1,0,1,2}}
  {{-2,0,0,0,1,1}}   {{-2,0,0,0,0,2}}   {{-2,-1,0,1,1,1}}
  {{-2,-1,0,0,1,2}}  {{-2,-1,-1,1,1,2}} {{-2,-1,-1,0,2,2}}
  {{-2,-1,-1,0,1,3}} {{-2,-2,0,1,1,2}}  {{-2,-2,0,0,2,2}}
  {{-2,-2,0,0,1,3}}  {{-2,-2,-1,1,2,2}} {{-2,-2,-1,1,1,3}}
  {{-2,-2,-1,0,2,3}} {{-3,-1,0,1,1,2}}  {{-3,-1,0,0,2,2}}
  {{-3,-1,0,0,1,3}}  {{-3,-1,-1,1,2,2}} {{-3,-1,-1,1,1,3}}
  {{-3,-1,-1,0,2,3}} {{-3,-2,0,1,2,2}}  {{-3,-2,0,1,1,3}}
  {{-3,-2,0,0,2,3}}  {{-3,-2,-1,1,2,3}}
Therefore, a(6) = 29.
		

Crossrefs

Cf. A348532.

Programs

  • Maple
    b:= proc(p) option remember; {p, seq(`if`(coeff(p, x, i)>1,
          b(expand((p-2*x^i+x^(i-1)+x^(i+1))*`if`(i=0, x, 1)
                   )), [])[], i=0..degree(p))}
        end:
    a:= n-> nops(b(n)):
    seq(a(n), n=0..10);  # Alois P. Heinz, Oct 07 2021
  • Mathematica
    b[p_] := b[p] = Union@Flatten@Join[{p}, Table[If[Coefficient[p, x, i] > 1, b[Expand[(p - 2*x^i + x^(i - 1) + x^(i + 1))*If[i == 0, x, 1]]]], {i, 0, Exponent[p, x]}]];
    a[n_] := If[n == 0, 1, Length[b[n]] - 1];
    Table[Print[n, " ", a[n]]; a[n], {n, 0, 14}] (* Jean-François Alcover, Jun 04 2022, after Alois P. Heinz *)
  • Python
    def nextq(q):
        used = set()
        for i in range(len(q)-1):
            for j in range(i+1, len(q)):
                if q[i] == q[j]:
                    if q[i] in used: continue
                    used.add(q[i])
                    qc = list(q); qc[i] -= 1; qc[j] += 1
                    yield tuple(sorted(qc))
    def a(n):
        s = tuple(0 for i in range(n)); reach = {s}; expand = list(reach)
        while len(expand) > 0:
            q = expand.pop()
            for qq in nextq(q):
                if qq not in reach:
                    reach.add(qq)
                    if len(set(qq)) < len(qq):
                        expand.append(qq)
        return len(reach)
    print([a(n) for n in range(17)]) # Michael S. Branicky, Oct 10 2021

Extensions

a(15)-a(22) from David A. Corneth, Oct 08 2021
a(23)-a(25) from Michael S. Branicky, Oct 12 2021
Showing 1-1 of 1 results.