A349960 Values taken by the function A067095 in the order of their appearance.
2, 1, 18, 181, 1817, 18175, 181757, 1817571, 18175719, 181757197, 1817571972, 18175719727, 181757197277, 1817571972772, 18175719727727, 181757197277277, 1817571972772779, 18175719727727795, 181757197277277957, 1817571972772779572, 18175719727727795720, 181757197277277957202
Offset: 1
Examples
Floor(A019520(5)/A019519(5)) = floor(246810/13579) = floor(18.175859...) = 18, hence, 18 is a term.
References
- Mark I. Krusemeyer, George T. Gilbert and Loren C. Larson, A Mathematical Orchard, Problems and Solutions, MAA, 2012, Problem 87, pp. 159-161.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..1001
Programs
-
Mathematica
terms=5; f[i_]:=FromDigits@Flatten[IntegerDigits/@i]; k[q_]:=f[Range[2,2q,2]]/f[Range[1,2q,2]]; DeleteDuplicates@Table[Floor[k@n],{n,10^(terms-2)/2}] (* Giorgos Kalogeropoulos, Dec 10 2021 *)
-
Python
def A349960(n): return 3-n if n <= 2 else int("".join(str(d) for d in range(2,10**(n-2)+1,2)))//int("".join(str(d) for d in range(1,10**(n-2),2))) # Chai Wah Wu, Dec 10 2021 from itertools import count def A349960(n): # a more efficient implementation if n <= 2: return 3-n a, b = '', '' for i in count(1,2): a += str(i) b += str(i+1) ai, bi = int(a), int(b) if len(a)+n-2 == len(b): return bi//ai m = 10**(n-2-len(b)+len(a)) lb = bi*m//(ai+1) ub = (bi+1)*m//ai if lb == ub: return lb # Chai Wah Wu, Dec 10 2021
Formula
a(n) = floor(k((n + 6)/2)*10^(n - 1 - ceiling(log_10(k((n + 6)/2))))) for k(n) = A019520(n)/A019519(n) and n >= 2 (conjectured). - Giorgos Kalogeropoulos, Dec 10 2021
Extensions
a(5)-a(7) from Michel Marcus, Dec 07 2021
a(8)-a(9) from Martin Ehrenstein, Dec 10 2021
a(10)-a(22) from Chai Wah Wu, Dec 10 2021
Comments