cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349960 Values taken by the function A067095 in the order of their appearance.

Original entry on oeis.org

2, 1, 18, 181, 1817, 18175, 181757, 1817571, 18175719, 181757197, 1817571972, 18175719727, 181757197277, 1817571972772, 18175719727727, 181757197277277, 1817571972772779, 18175719727727795, 181757197277277957, 1817571972772779572, 18175719727727795720, 181757197277277957202
Offset: 1

Views

Author

Bernard Schott, Dec 07 2021

Keywords

Comments

a(2) < a(1), but thereafter this function increases monotonically without limit (see Krusemeyer reference).
The record values > 2 of A067095(m) occur when m = 5, 50, 500, 5000, .... This happens precisely when the corresponding numerator A019520(m) goes from 2/4/6/8/10/12/....../999...98 to 2/4/6/8/10/12/....../999...98/1000...00, where here / means concatenation.
If a(n) is a k-digit number (k = A055642(a(n))), then 1.8 * 10^(k-1) < a(n) < 1.9 * 10^(k-1).
If we consider the sequence u(n) = a(n)/10^(k-1) where k = length(a(n)); we have u(n) is increasing with an upper bound 1.9; so, this sequence u(n) is convergent and, conjecture, this limit = 1.81757197277277957... found by Giorgos Kalogeropoulos; now, from this limit, it is possible to get the successive terms of this sequence here.

Examples

			Floor(A019520(5)/A019519(5)) = floor(246810/13579) = floor(18.175859...) = 18, hence, 18 is a term.
		

References

  • Mark I. Krusemeyer, George T. Gilbert and Loren C. Larson, A Mathematical Orchard, Problems and Solutions, MAA, 2012, Problem 87, pp. 159-161.

Crossrefs

Programs

  • Mathematica
    terms=5; f[i_]:=FromDigits@Flatten[IntegerDigits/@i];
    k[q_]:=f[Range[2,2q,2]]/f[Range[1,2q,2]];
    DeleteDuplicates@Table[Floor[k@n],{n,10^(terms-2)/2}] (* Giorgos Kalogeropoulos, Dec 10 2021 *)
  • Python
    def A349960(n): return 3-n if n <= 2 else int("".join(str(d) for d in range(2,10**(n-2)+1,2)))//int("".join(str(d) for d in range(1,10**(n-2),2))) # Chai Wah Wu, Dec 10 2021
    from itertools import count
    def A349960(n): # a more efficient implementation
        if n <= 2:
            return 3-n
        a, b = '', ''
        for i in count(1,2):
            a += str(i)
            b += str(i+1)
            ai, bi = int(a), int(b)
            if len(a)+n-2 == len(b): return bi//ai
            m = 10**(n-2-len(b)+len(a))
            lb = bi*m//(ai+1)
            ub = (bi+1)*m//ai
            if lb == ub: return lb # Chai Wah Wu, Dec 10 2021

Formula

a(n) = floor(k((n + 6)/2)*10^(n - 1 - ceiling(log_10(k((n + 6)/2))))) for k(n) = A019520(n)/A019519(n) and n >= 2 (conjectured). - Giorgos Kalogeropoulos, Dec 10 2021

Extensions

a(5)-a(7) from Michel Marcus, Dec 07 2021
a(8)-a(9) from Martin Ehrenstein, Dec 10 2021
a(10)-a(22) from Chai Wah Wu, Dec 10 2021