cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A351279 a(n) = Sum_{k=0..n} 2^k * k^(n-k).

Original entry on oeis.org

1, 2, 6, 18, 58, 202, 762, 3114, 13754, 65386, 332922, 1806506, 10398266, 63226858, 404640250, 2716838186, 19083233210, 139874994282, 1067462826874, 8464760754602, 69620304280890, 592925117961450, 5220996124450042, 47467755352580650, 445027186867923642
Offset: 0

Views

Author

Seiichi Manyama, Feb 06 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := Sum[2^k * k^(n-k), {k, 1, n}]; Array[a, 25, 0] (* Amiram Eldar, Feb 06 2022 *)
  • PARI
    a(n) = sum(k=0, n, 2^k*k^(n-k));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, (2*x)^k/(1-k*x)))

Formula

G.f.: Sum_{k>=0} (2*x)^k/(1 - k*x).
a(n) ~ sqrt(2*Pi/(1 + LambertW(exp(1)*n/2))) * n^(n + 1/2) * exp(n/LambertW(exp(1)*n/2) - n) / LambertW(exp(1)*n/2)^(n + 1/2). - Vaclav Kotesovec, Feb 06 2022

A350008 a(n) = Sum_{k=0..n} k^(2*k).

Original entry on oeis.org

1, 2, 18, 747, 66283, 9831908, 2186614244, 680409687093, 282155386397749, 150376790683396870, 100150376790683396870, 81502899763630444510191, 79578350103154474577951727, 91812908543371771132977567736
Offset: 0

Views

Author

Seiichi Manyama, Dec 08 2021

Keywords

Comments

Partial sums of A062206.

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[If[k == 0, 1, k^(2*k)], {k, 0, n}]; Array[a, 14, 0] (* Amiram Eldar, Dec 08 2021 *)
  • PARI
    a(n) = sum(k=0, n, k^(2*k));

Formula

a(n) ~ n^(2*n). - Vaclav Kotesovec, Dec 08 2021

A368553 a(n) = Sum_{k=0..n} k^k * 2^(n-k).

Original entry on oeis.org

1, 3, 10, 47, 350, 3825, 54306, 932155, 18641526, 424703541, 10849407082, 307010484775, 9530121417806, 321935349427865, 11755877524413746, 461405645429686867, 19369555364568925350, 865979372615474614877, 41078366820527486805178
Offset: 0

Views

Author

Seiichi Manyama, Dec 29 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, k^k*2^(n-k));

Formula

a(0) = 1; a(n) = 2*a(n-1) + n^n.
a(n) ~ n^n. - Vaclav Kotesovec, Jan 13 2024
Showing 1-3 of 3 results.