cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A349966 a(n) = Sum_{k=0..n} (k * (n-k))^n.

Original entry on oeis.org

1, 0, 1, 16, 418, 17600, 1086979, 92223488, 10292241540, 1462309109760, 257739952352133, 55188518041440256, 14111052911099343782, 4246668467339066589184, 1485904567816768099571207, 598145009954138900489830400
Offset: 0

Views

Author

Seiichi Manyama, Dec 07 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := Sum[(k*(n - k))^n, {k, 0, n}]; Array[a, 16, 0] (* Amiram Eldar, Dec 07 2021 *)
  • PARI
    a(n) = sum(k=0, n, (k*(n-k))^n);

Formula

a(n) = [x^n] (Sum_{k=0..n} k^n * x^k)^2.
a(n) ~ sqrt(Pi) * n^(2*n + 1/2) / 2^(2*n + 1). - Vaclav Kotesovec, Dec 07 2021

A349969 a(n) = Sum_{k=0..n} (k*n)^(n-k).

Original entry on oeis.org

1, 1, 3, 16, 141, 1871, 34951, 873174, 27951929, 1107415549, 52891809491, 2987861887924, 196828568831365, 14950745148070499, 1296606974501951743, 127238563043551898986, 14012626653816435643633, 1719136634276882827095009, 233448782800118609096218891
Offset: 0

Views

Author

Seiichi Manyama, Dec 07 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[If[k == n == 0, 1, (k*n)^(n - k)], {k, 0, n}]; Array[a, 19, 0] (* Amiram Eldar, Dec 07 2021 *)
  • PARI
    a(n) = sum(k=0, n, (k*n)^(n-k));

Formula

a(n) = [x^n] Sum_{k>=0} x^k/(1 - n*k * x).
a(n) ~ sqrt(2*Pi/(n*(1 + LambertW(exp(1)*n^2)))) * (n^2/LambertW(exp(1)*n^2))^(n + 1/2 - n/LambertW(exp(1)*n^2)). - Vaclav Kotesovec, Dec 07 2021
Showing 1-2 of 2 results.