cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A349970 a(n) = Sum_{k=0..n} (2*k)^(n-k).

Original entry on oeis.org

1, 1, 3, 9, 31, 125, 579, 3009, 17255, 108005, 731883, 5331625, 41501135, 343405709, 3007557523, 27775308049, 269603741111, 2742598070709, 29164361115067, 323444222468089, 3733412864370975, 44767318872513885, 556707323098632547, 7168524182698345313
Offset: 0

Views

Author

Seiichi Manyama, Dec 07 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[If[k == n == 0, 1, (2*k)^(n - k)], {k, 0, n}]; Array[a, 24, 0] (* Amiram Eldar, Dec 07 2021 *)
  • PARI
    a(n) = sum(k=0, n, (2*k)^(n-k));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, x^k/(1-2*k*x)))

Formula

G.f.: Sum_{k>=0} x^k/(1 - 2*k * x).
a(n) ~ sqrt(Pi) * (2*n/LambertW(2*exp(1)*n))^(1/2 + n - n/LambertW(2*exp(1)*n)) / sqrt(1 + LambertW(2*exp(1)*n)). - Vaclav Kotesovec, Dec 07 2021

A349964 a(n) = Sum_{k=0..n} (k*n)^n.

Original entry on oeis.org

1, 1, 20, 972, 90624, 13828125, 3133930176, 988501957072, 414139067400192, 222497518123837665, 149143419250000000000, 122020951254446884154196, 119671520043865789861724160, 138593796657903100873209121453
Offset: 0

Views

Author

Seiichi Manyama, Dec 07 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[If[k == n == 0, 1, (k*n)^n], {k, 0, n}]; Array[a, 14, 0] (* Amiram Eldar, Dec 07 2021 *)
  • PARI
    a(n) = sum(k=0, n, (k*n)^n);

Formula

a(n) = n^n * [x^n] Sum_{k>=0} (k * x)^k/(1 - k * x) = n^n * A031971(n).
a(n) ~ c * n^(2*n), where c = 1/(1 - 1/exp(1)) = A185393. - Vaclav Kotesovec, Dec 07 2021
Showing 1-2 of 2 results.