A349979 Irregular triangle read by rows: T(n,k) is the number of n-permutations whose second-longest cycle has length exactly k; n>=0, 0<=k<=floor(n/2).
1, 1, 1, 1, 2, 4, 6, 15, 3, 24, 61, 35, 120, 290, 270, 40, 720, 1646, 1974, 700, 5040, 11025, 14707, 8288, 1260, 40320, 85345, 117459, 90272, 29484, 362880, 749194, 1023390, 974720, 446040, 72576, 3628800, 7347374, 9813210, 10666480, 6332040, 2128896
Offset: 0
Examples
Triangle begins: [0] 1; [1] 1; [2] 1, 1; [3] 2, 4; [4] 6, 15, 3; [5] 24, 61, 35; [6] 120, 290, 270, 40; [7] 720, 1646, 1974, 700; [8] 5040, 11025, 14707, 8288, 1260; [9] 40320, 85345, 117459, 90272, 29484; ...
Links
- Alois P. Heinz, Rows n = 0..200, flattened
- Steven Finch, Second best, Third worst, Fourth in line, arxiv:2202.07621 [math.CO], 2022.
Crossrefs
Programs
-
Maple
b:= proc(n, l) option remember; `if`(n=0, x^l[1], add((j-1)!* b(n-j, sort([l[], j])[2..3])*binomial(n-1, j-1), j=1..n)) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..n/2))(b(n, [0$2])): seq(T(n), n=0..12); # Alois P. Heinz, Dec 07 2021
-
Mathematica
b[n_, l_] := b[n, l] = If[n == 0, x^l[[1]], Sum[(j - 1)!*b[n - j, Sort[ Append[l, j]][[2 ;; 3]]]*Binomial[n - 1, j - 1], {j, 1, n}]]; T[n_] := With[{p = b[n, {0, 0}]}, Table[Coefficient[p, x, i], {i, 0, n/2}]]; Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 28 2021, after Alois P. Heinz *)
Formula
Sum_{k=0..floor(n/2)} k * T(n,k) = A332851(n). - Alois P. Heinz, Dec 07 2021
Comments