A349980 Irregular triangle read by rows: T(n,k) is the number of n-permutations whose second-shortest cycle has length exactly k; n >= 0, 0 <= k <= max(0,n-1).
1, 1, 1, 1, 2, 1, 3, 6, 7, 3, 8, 24, 31, 15, 20, 30, 120, 191, 135, 40, 90, 144, 720, 1331, 945, 280, 420, 504, 840, 5040, 10655, 7077, 4480, 1260, 2688, 3360, 5760, 40320, 95887, 64197, 41552, 11340, 18144, 20160, 25920, 45360, 362880, 958879, 646965, 395360, 238140, 72576, 151200, 172800, 226800, 403200
Offset: 0
Examples
Triangle begins: [0] 1; [1] 1; [2] 1, 1; [3] 2, 1, 3; [4] 6, 7, 3, 8; [5] 24, 31, 15, 20, 30; [6] 120, 191, 135, 40, 90, 144; [7] 720, 1331, 945, 280, 420, 504, 840; [8] 5040, 10655, 7077, 4480, 1260, 2688, 3360, 5760; [9] 40320, 95887, 64197, 41552, 11340, 18144, 20160, 25920, 45360; ...
Links
- Alois P. Heinz, Rows n = 0..141, flattened
- Steven Finch, Second best, Third worst, Fourth in line, arxiv:2202.07621 [math.CO], 2022.
Crossrefs
Programs
-
Maple
m:= infinity: b:= proc(n, l) option remember; `if`(n=0, x^`if`(l[2]=m, 0, l[2]), add(b(n-j, sort([l[], j])[1..2]) *binomial(n-1, j-1)*(j-1)!, j=1..n)) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..max(0, n-1)))(b(n, [m$2])): seq(T(n), n=0..10); # Alois P. Heinz, Dec 07 2021
-
Mathematica
m = Infinity; b[n_, l_] := b[n, l] = If[n == 0, x^If[l[[2]] == m, 0, l[[2]]], Sum[b[n-j, Sort[Append[l, j]][[1;;2]]]*Binomial[n - 1, j - 1]*(j - 1)!, {j, 1, n}]]; T[n_] := With[{p = b[n, {m, m}]}, Table[Coefficient[p, x, i], {i, 0, Max[0, n - 1]}]]; Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Dec 28 2021, after Alois P. Heinz *)
Formula
Sum_{k=0..max(0,n-1)} k * T(n,k) = A332906(n). - Alois P. Heinz, Dec 07 2021
Extensions
More terms from Alois P. Heinz, Dec 07 2021
Comments