cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349989 a(n) is the smallest k such that k^n + (k+1)^n is divisible by a square > 1.

Original entry on oeis.org

4, 3, 1, 113, 2, 3, 3, 19, 1, 1, 4, 113, 4, 3, 1, 765, 4, 3, 4, 87, 1, 3, 4, 19, 2, 2, 1, 28, 4, 1, 4, 151, 1, 3, 2, 113, 4, 3, 1, 19, 4, 3, 4, 113, 1, 3, 4, 335, 3, 1, 1, 113, 4, 3, 1, 19, 1, 3, 4, 87, 4, 3, 1, 379, 2, 3, 4, 1, 1, 1, 4, 19, 4, 3, 1, 113, 3, 1, 4
Offset: 1

Views

Author

Jon E. Schoenfield, Dec 07 2021

Keywords

Comments

a(64) <= 379; a(76) <= 113. Terms a(65)..a(79): 2, 3, 4, 1, 1, 1, 4, 19, 4, 3, 1, a(76), 3, 1, 4.
At k=4, k^n + (k+1)^n = 4^n + 5^n is a multiple of 9 for all odd n, and at k=3, k^n + (k+1)^n = 3^n + 4^n is a multiple of 25 for all n == 2 (mod 4). Thus, a(n) <= 4 if n is not a multiple of 4.

Crossrefs

Programs

  • PARI
    a(n) = my(k=1); while(issquarefree(k^n + (k+1)^n), k++); k; \\ Michel Marcus, Dec 09 2021
    
  • Python
    from sympy.ntheory.factor_ import core
    def squarefree(n): return core(n, 2) == n
    def a(n):
        k = 1
        while squarefree(k**n + (k+1)**n): k += 1
        return k
    print([a(n) for n in range(1, 16)]) # Michael S. Branicky, Dec 09 2021

Formula

a(n) = A289629(n) if n is even.
a(k) = 1 for k in A049096.
a(n) <= 4 if 4 does not divide n; among terms where 4 divides n, certain terms appear repeatedly. E.g.,
a(n) <= 113 for n == 4 (mod 8): for all such n, 17^2 divides 113^n + 114^n;
a(n) <= 19 for n == 8 (mod 16): for all such n, 17^2 divides 19^n + 20^n;
a(n) <= 765 for n == 16 (mod 32): for all such n, 97^2 divides 765^n + 766^n;
a(n) <= 87 for n == 20 (mod 40): for all such n, 41^2 divides 87^n + 88^n;
a(n) <= 28 for n == 68 (mod 136): for all such n, 17^2 divides 28^n + 29^n;
a(n) <= 151 for n == 32 (mod 64): for all such n, 257^2 divides 151^n + 152^n;
a(n) <= 335 for n == 48 (mod 96): for all such n, 769^2 divides 335^n + 336^n.

Extensions

a(64)-a(79) from Kevin P. Thompson, Feb 23 2022