A350007 Array read by antidiagonals, n >= 2, m >= 0: T(n,m) is the smallest ludic number L(k) such that all n-th differences of (L(k), ..., L(k+n+m)) are zero, where L is A003309; T(n,m) = 0 if no such number exists.
1, 71, 11, 6392047, 41, 41
Offset: 2
Examples
Array begins: n\m| 0 1 2 3 4 5 ---+--------------------------------------------------- 2 | 1 71 6392047 ? ? ? 3 | 11 41 1111 2176387 61077491 93320837 4 | 41 1111 545977 27244691 93320837 ? 5 | 47 91 27244691 93320837 ? ? 6 | 91 23309 93320837 ? ? ? 7 | 1361 9899189 ? ? ? ? 8 | 4261 26233 ? ? ? ? 9 | 481 7110347 ? ? ? ? 10 | 46067 79241951 ? ? ? ? For n = 5 and m = 1, the first seven (n+m+1) consecutive ludic numbers for which all fifth (n-th) differences are 0 are (91, 97, 107, 115, 119, 121, 127), so T(5,1) = 91. The successive differences are (6, 10, 8, 4, 2, 6), (4, -2, -4, -2, 4), (-6, -2, 2, 6), (4, 4, 4), and (0, 0).
Comments