A350003 Array read by antidiagonals, n >= 2, m >= 0: T(n,m) is the smallest lucky number L(k) such that all n-th differences of (L(k), ..., L(k+n+m)) are zero, where L is A000959; T(n,m) = 0 if no such number exists.
37, 87, 31, 87, 87, 87, 72979, 17781, 1263, 31
Offset: 2
Examples
Array begins: n\m| 0 1 2 3 ---+----------------------------------- 2 | 37 87 87 72979 3 | 31 87 17781 196089 4 | 87 1263 196089 63955483 5 | 31 3687 17622975 ? 6 | 517 390015 ? ? 7 | 1797 1797 ? ? 8 | 1797 2432367 ? ? 9 | 267 9157647 ? ? 10 | 483 1683501 ? ? For n = 4 and m = 1, the first six (n+m+1) consecutive lucky numbers for which all fourth (n-th) differences are 0 are (1263, 1275, 1281, 1285, 1291, 1303), so T(4,1) = 1263. The successive differences are (12, 6, 4, 6, 12), (-6, -2, ,2, 6), (4, 4, 4), and (0, 0).
Comments