cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350014 Numbers whose square has a number of divisors coprime to 6.

Original entry on oeis.org

1, 4, 8, 9, 25, 27, 32, 36, 49, 64, 72, 100, 108, 121, 125, 169, 196, 200, 216, 225, 243, 256, 288, 289, 343, 361, 392, 441, 484, 500, 512, 529, 576, 675, 676, 729, 800, 841, 864, 900, 961, 968, 972, 1000, 1089, 1125, 1156, 1225, 1323, 1331, 1352, 1369, 1372, 1444
Offset: 1

Views

Author

Michael De Vlieger, Jan 17 2022

Keywords

Comments

a(n) = m in A001694 such that d(m^2) is not divisible by 3, where d(n) = A000005(n).
Supersequence of A051676 (composite numbers whose square has a prime number of divisors).
Subsequence of A001694 (powerful numbers).
Numbers whose prime factorization has only exponents that are congruent to {0, 2} mod 3 (A007494). - Amiram Eldar, Mar 31 2022

Crossrefs

Programs

  • Maple
    A350014 := proc(n)
        option remember ;
        local a;
        if n =1 then
            1;
        else
            for a from procname(n-1)+1 do
                if igcd(numtheory[tau](a^2),6) = 1 then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A350014(n),n=1..20) ; # R. J. Mathar, Apr 06 2022
  • Mathematica
    Select[Range[1500], CoprimeQ[DivisorSigma[0, #^2], 6] &] (* or *)
    With[{nn = 1500}, Select[Union@ Flatten@ Table[a^2*b^3, {b, nn^(1/3)}, {a, Sqrt[nn/b^3]}], Mod[DivisorSigma[0, #^2], 3] != 0 &]]
  • PARI
    isok(m) = gcd(numdiv(m^2), 6) == 1; \\ Michel Marcus, Mar 04 2022

Formula

a(n) = {m : gcd(d(m^2), 6) = 1}.
Sum_{n>=1} 1/a(n) = 15*zeta(3)/Pi^2 (= 10 * A240976). - Amiram Eldar, Mar 31 2022