A350014 Numbers whose square has a number of divisors coprime to 6.
1, 4, 8, 9, 25, 27, 32, 36, 49, 64, 72, 100, 108, 121, 125, 169, 196, 200, 216, 225, 243, 256, 288, 289, 343, 361, 392, 441, 484, 500, 512, 529, 576, 675, 676, 729, 800, 841, 864, 900, 961, 968, 972, 1000, 1089, 1125, 1156, 1225, 1323, 1331, 1352, 1369, 1372, 1444
Offset: 1
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Programs
-
Maple
A350014 := proc(n) option remember ; local a; if n =1 then 1; else for a from procname(n-1)+1 do if igcd(numtheory[tau](a^2),6) = 1 then return a; end if; end do: end if; end proc: seq(A350014(n),n=1..20) ; # R. J. Mathar, Apr 06 2022
-
Mathematica
Select[Range[1500], CoprimeQ[DivisorSigma[0, #^2], 6] &] (* or *) With[{nn = 1500}, Select[Union@ Flatten@ Table[a^2*b^3, {b, nn^(1/3)}, {a, Sqrt[nn/b^3]}], Mod[DivisorSigma[0, #^2], 3] != 0 &]]
-
PARI
isok(m) = gcd(numdiv(m^2), 6) == 1; \\ Michel Marcus, Mar 04 2022
Formula
a(n) = {m : gcd(d(m^2), 6) = 1}.
Sum_{n>=1} 1/a(n) = 15*zeta(3)/Pi^2 (= 10 * A240976). - Amiram Eldar, Mar 31 2022
Comments