cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350015 Irregular triangle read by rows: T(n,k) is the number of n-permutations whose third-longest cycle has length exactly k; n >= 0, 0 <= k <= floor(n/3).

Original entry on oeis.org

1, 1, 2, 5, 1, 17, 7, 74, 46, 394, 311, 15, 2484, 2241, 315, 18108, 17627, 4585, 149904, 152839, 57897, 2240, 1389456, 1460944, 705600, 72800, 14257440, 15326180, 8673060, 1660120, 160460640, 175421214, 110271546, 31600800, 1247400, 1965444480, 2177730270, 1469308698, 559402272, 55135080
Offset: 0

Views

Author

Steven Finch, Dec 08 2021

Keywords

Comments

If the permutation has no third cycle, then its third-longest cycle is defined to have length 0.

Examples

			Triangle begins:
[0]      1;
[1]      1;
[2]      2;
[3]      5,      1;
[4]     17,      7;
[5]     74,     46;
[6]    394,    311,    15;
[7]   2484,   2241,   315;
[8]  18108,  17627,  4585;
[9] 149904, 152839, 57897, 2240;
...
		

Crossrefs

Column 0 gives 1 together with A000774.
Row sums give A000142.

Programs

  • Maple
    b:= proc(n, l) option remember; `if`(n=0, x^l[1], add((j-1)!*
          b(n-j, sort([l[], j])[2..4])*binomial(n-1, j-1), j=1..n))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, [0$3])):
    seq(lprint(T(n)), n=0..14);  # Alois P. Heinz, Dec 11 2021
  • Mathematica
    b[n_, l_] := b[n, l] = If[n == 0, x^l[[1]], Sum[(j - 1)!*b[n - j, Sort[Append[l, j]][[2 ;; 4]]]*Binomial[n - 1, j - 1], {j, 1, n}]];
    T[n_] := With[{p = b[n, {0, 0, 0}]}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]];
    Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Dec 28 2021, after Alois P. Heinz *)

Formula

Sum_{k=0..floor(n/3)} k * T(n,k) = A332852(n) for n >= 3. - Alois P. Heinz, Dec 12 2021