A350028 Number of Euler tours of the complete graph on n vertices, minus a matching if n is even.
1, 1, 2, 2, 264, 744, 129976320, 1847500800, 911520057021235200, 91507897551783002112, 257326999238092967427785160130560, 234051620220909442615820736748584960, 6705710151431658873046319662156165939200000000000000
Offset: 1
Examples
For n=6, if the edges 12,34,56 are removed from the complete graph and we fix the tour to start with the edge 13, we get 372 Euler tours. Here are the first and the last few in lexicographic order. 1324152635461 1324152645361 1324153625461 1324153645261 1324154625361 1324154635261 1324162536451 ... 1364532516241 1364532614251 1364532615241. This must be multiplied by 2 to account for the reversed tours, for a total of 744.
Links
- Eric Weisstein, Cocktail Party Graph, MathWorld.
Crossrefs
Programs
-
Python
# for 3 <= n <= 9 def A(n,w="13"): if n%2==0 and len(w) > n*(n-1)//2 - n//2: return 2 if n%2==1 and len(w) > n*(n-1)//2: return 2 return sum(A(n, w+t) for t in "123456789"[:n] if t!=w[-1] and t+w[-1] not in w and w[-1]+t not in w and (n%2==1 or t+w[-1] not in "121 343 565 787"))
Formula
Extensions
a(1)-a(2) prepended, a(10)-a(13) added by Max Alekseyev, Jul 15 2025
Comments