cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350037 a(n) = n^2 mod round(sqrt(n)).

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 4, 4, 1, 0, 1, 4, 4, 1, 0, 1, 4, 3, 4, 1, 0, 1, 4, 3, 4, 1, 0, 1, 4, 2, 2, 4, 1, 0, 1, 4, 2, 2, 4, 1, 0, 1, 4, 1, 0, 1, 4, 1, 0, 1, 4, 1, 0, 1, 4, 1, 0, 1, 4, 0, 7, 7, 0, 4, 1, 0, 1, 4, 0, 7, 7, 0, 4
Offset: 1

Views

Author

Sebastian F. Orellana, Dec 09 2021

Keywords

Examples

			a(5) = 5^2 mod round(sqrt(5)) = 25 mod 2 = 1.
		

Crossrefs

Cf. A336302 (with ceiling instead of round).

Programs

  • Java
    import java.util.Arrays;
    public class modulus_sequence {
      static int[] solutions = new int[480];
      static int a_of_n (double n) {
        int z = (int)Math.round(Math.sqrt(n));
        int w = (int)(Math.pow(n, 2));
        int k = w%z;
        return k;
      }
      public static void main(String[] args) {
        for (double j = 2; j < 482; j++) {
          int h = a_of_n(j);
          solutions[(int) (j-2)]=h;
        }
        System.out.println(Arrays.toString(solutions));
      }
    }
    
  • Mathematica
    a[n_] := Mod[n^2, Round @ Sqrt[n]]; Array[a, 100, 2] (* Amiram Eldar, Dec 10 2021 *)
    Table[PowerMod[n,2,Round[Sqrt[n]]],{n,2,101}] (* Stefano Spezia, Dec 15 2021 *)
  • PARI
    a(n) = n^2 % round(sqrt(n)); \\ Michel Marcus, Dec 14 2021
    
  • PARI
    a(n) = lift(Mod(n, ((sqrtint(4*n) + 1)\2))^2); \\ Michel Marcus, Dec 14 2021
    
  • Python
    from math import isqrt
    def A350037(n): return pow(n,2,(m:=isqrt(n))+int(4*n>=(2*m+1)**2)) # Chai Wah Wu, Jan 10 2022

Formula

a(n) = A000290(n) mod A000194(n). - Michel Marcus, Dec 14 2021