cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A350043 Sum of all the parts > 1 in the partitions of n into 3 positive integer parts.

Original entry on oeis.org

0, 2, 7, 15, 24, 36, 58, 75, 104, 138, 175, 217, 277, 328, 399, 477, 560, 650, 766, 869, 1000, 1140, 1287, 1443, 1633, 1806, 2015, 2235, 2464, 2704, 2986, 3247, 3552, 3870, 4199, 4541, 4933, 5300, 5719, 6153, 6600, 7062, 7582, 8073, 8624, 9192, 9775, 10375, 11041, 11674
Offset: 3

Views

Author

Wesley Ivan Hurt, Dec 10 2021

Keywords

Examples

			a(7) = 24; The partitions of 7 into 3 positive integer parts are (1,1,5), (1,2,4), (1,3,3) and (2,2,3). The sum of all the parts > 1 is then 5+2+4+3+3+2+2+3 = 24.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-x*(x^9 - x^8 - 3*x^7 + 5*x^5 + 6*x^4 - 6*x^3 - 11*x^2 - 7*x - 2)/((x + 1)^2*(x^2 + x + 1)^2*(x - 1)^4), {x, 0, 50}], x] (* Wesley Ivan Hurt, Nov 12 2022 *)
  • PARI
    a(n)=if(n==3, 0, -1 - floor((n-1)/2) + n * sum(k=1,floor(n/3), floor((n-3*k+2)/2))) \\ Winston de Greef, Jan 28 2024

Formula

For n >= 4, a(n) = -1 - floor((n-1)/2) + n * Sum_{k=1..floor(n/3)} floor((n-3*k+2)/2).
G.f.: -x^4 * (x^9-x^8-3*x^7+5*x^5+6*x^4-6*x^3-11*x^2-7*x-2) / ((x+1)^2 *(x^2+x+1)^2 *(x-1)^4). - Alois P. Heinz, Dec 13 2021
a(n) = 2*a(n-2)+2*a(n-3)-a(n-4)-4*a(n-5)-a(n-6)+2*a(n-7)+2*a(n-8)-a(n-10). - Wesley Ivan Hurt, Dec 17 2021
Showing 1-1 of 1 results.