A350045 Numbers that are the perimeter of a primitive 120-degree integer triangle.
15, 28, 40, 66, 77, 91, 104, 126, 144, 153, 170, 187, 190, 209, 220, 228, 260, 276, 286, 299, 322, 325, 345, 350, 390, 400, 420, 435, 442, 464, 476, 493, 496, 522, 527, 544, 551, 558, 589, 608, 620, 630, 646, 665, 672, 703, 714, 740, 770, 777, 798, 805, 814, 840, 851, 861, 874, 888, 902, 920, 943, 946, 950
Offset: 1
Keywords
Examples
b(n) = Sum_{k=1..3} A264827(3*n+k-3). b(1) = 3+5+7 = 15 = a(1). b(2) = 5+16+19 = 40 = a(3). b(3) = 7+8+13 = 28 = a(2). b(4) = 7+33+37 = 77 = a(5). b(5) = 9+56+61 = 126 = a(8). b(6) = 11+24+31 = 66 = a(4). b(7) = 11+85+91 = 187 = a(12). b(8) = 13+35+43 = 91 = a(6).
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
Programs
-
Ruby
def A(n) ary = [] (1..n).each{|i| (i + 1..n).each{|j| if i.gcd(j) == 1 && (i - j) % 3 > 0 ary << 2 * j * j + 3 * i * j + i * i end } } ary end p A(30).uniq.sort[0..100]