cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350078 Irregular triangle read by rows: T(n,k) is the number of endofunctions on [n] whose second-largest component has size exactly k; n >= 0, 0 <= k <= floor(n/2).

Original entry on oeis.org

1, 1, 3, 1, 17, 10, 142, 87, 27, 1569, 911, 645, 21576, 11930, 10260, 2890, 355081, 189610, 174132, 104720, 6805296, 3543617, 3229275, 2493288, 705740, 148869153, 76060087, 67843521, 60223520, 34424208, 3660215680, 1842497914, 1605373560, 1530575960, 1051155000, 310181886
Offset: 0

Views

Author

Steven Finch, Dec 12 2021

Keywords

Comments

An endofunction on [n] is a function from {1,2,...,n} to {1,2,...,n}.
If the mapping has no second component, then its second-largest component is defined to have size 0.

Examples

			Triangle begins:
       1;
       1;
       3,      1;
      17,     10;
     142,     87,     27;
    1569,    911,    645;
   21576,  11930,  10260,   2890;
  355081, 189610, 174132, 104720;
  ...
		

Crossrefs

Column 0 gives gives 1 together with A001865.
Row sums give A000312.

Programs

  • Maple
    g:= proc(n) option remember; add(n^(n-j)*(n-1)!/(n-j)!, j=1..n) end:
    b:= proc(n, l) option remember; `if`(n=0, x^l[1], add(g(i)*
          b(n-i, sort([l[], i])[-2..-1])*binomial(n-1, i-1), i=1..n))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, [0$2])):
    seq(T(n), n=0..10);  # Alois P. Heinz, Dec 17 2021
  • Mathematica
    g[n_] := g[n] = Sum[n^(n - j)*(n - 1)!/(n - j)!, {j, 1, n}];
    b[n_, l_] := g[n, l] = If[n == 0, x^l[[1]], Sum[g[i]*b[n - i, Sort[ Append[l, i]][[-2 ;; -1]]]*Binomial[n - 1, i - 1], {i, 1, n}]];
    T[n_] := With[{p = b[n, {0, 0}]}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]];
    Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Dec 28 2021, after Alois P. Heinz *)

Extensions

More terms (three rows) from Alois P. Heinz, Dec 15 2021