A350080 Irregular triangle read by rows: T(n,k) is the number of endofunctions on [n] whose third-largest component has size exactly k; n >= 0, 0 <= k <= floor(n/3).
1, 1, 4, 26, 1, 237, 19, 2789, 336, 40270, 5981, 405, 689450, 115193, 18900, 13657756, 2459955, 659505, 307348641, 58366045, 20330163, 1375640, 7745565616, 1530739594, 623758590, 99936200, 216114310994, 44076571672, 19795671225, 5325116720
Offset: 0
Examples
Triangle begins: 1; 1; 4; 26, 1; 237, 19; 2789, 336; 40270, 5981, 405; 689450, 115193, 18900; ...
Links
- Alois P. Heinz, Rows n = 0..120, flattened
- Steven Finch, Second best, Third worst, Fourth in line, arxiv:2202.07621 [math.CO], 2022.
Programs
-
Maple
g:= proc(n) option remember; add(n^(n-j)*(n-1)!/(n-j)!, j=1..n) end: b:= proc(n, l) option remember; `if`(n=0, x^l[1], add(g(i)* b(n-i, sort([l[], i])[-3..-1])*binomial(n-1, i-1), i=1..n)) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, [0$3])): seq(T(n), n=0..12); # Alois P. Heinz, Dec 17 2021
-
Mathematica
g[n_] := g[n] = Sum[n^(n - j)*(n - 1)!/(n - j)!, {j, 1, n}]; b[n_, l_] := b[n, l] = If[n == 0, x^l[[1]], Sum[g[i]*b[n - i, Sort[ Append[l, i]][[-3 ;; -1]]]*Binomial[n - 1, i - 1], {i, 1, n}]]; T[n_] := With[{p = b[n, {0, 0, 0}]}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]]; Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 28 2021, after Alois P. Heinz *)
Extensions
More terms (4 rows) from Alois P. Heinz, Dec 16 2021
Comments