A350090 a(n) is the number of indices i in the range 0 <= i <= n-1 such that A003215(n) - A003215(i) is an oblong number (A002378), where A003215 are the hex numbers.
0, 1, 1, 1, 1, 3, 1, 2, 3, 1, 1, 1, 3, 1, 1, 3, 3, 1, 3, 3, 3, 3, 5, 1, 1, 1, 5, 1, 1, 3, 1, 3, 1, 7, 1, 3, 3, 1, 1, 3, 7, 1, 1, 3, 3, 1, 3, 3, 1, 1, 3, 3, 1, 3, 7, 1, 3, 7, 1, 7, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 7, 5, 3, 3, 1, 5, 3, 3, 7, 3, 1, 1, 3, 3, 3, 7, 1, 3, 1, 3, 1
Offset: 0
Keywords
Examples
For n=5, the 5 numbers hex(5)-hex(i), for i=0 to 4, are (90, 84, 72, 54, 30) out of which 90, 72 and 30 are oblong, so a(5) = 3.
Links
- Michel Marcus, Table of n, a(n) for n = 0..10000
Programs
-
Mathematica
obQ[n_] := IntegerQ @ Sqrt[4*n + 1]; hex[n_] := 3*n*(n + 1) + 1; a[n_] := Module[{h = hex[n]}, Count[Range[0, n - 1], ?(obQ[h - hex[#]] &)]]; Array[a, 100, 0] (* _Amiram Eldar, Dec 14 2021 *)
-
PARI
hex(n) = 3*n*(n+1)+1; \\ A003215 isob(n) = my(m=sqrtint(n)); m*(m+1)==n; \\ A002378 a(n) = my(h=hex(n)); sum(k=0, n-1, isob(h - hex(k)));
-
PARI
a(n) = numdiv(3*n*n + 3*n + 1) - 1; \\ Jinyuan Wang, Dec 19 2021
Formula
Extensions
Edited by N. J. A. Sloane, Dec 25 2021
Comments