cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350092 a(n) = floor(x^n) where x = 1 + sqrt(5)/2 = A176055.

Original entry on oeis.org

1, 2, 4, 9, 20, 42, 90, 191, 405, 857, 1816, 3848, 8150, 17263, 36564, 77445, 164031, 347423, 735855, 1558567, 3301098, 6991839, 14808952, 31365865, 66433969, 140709405, 298027302, 631231956, 1336970739, 2831749467, 5997741619, 12703420605, 26906276616
Offset: 0

Views

Author

Michel Lagneau, Dec 14 2021

Keywords

Comments

a(n+1)/a(n) tends to A176055 when n tends towards infinity.

Crossrefs

Cf. A176055, A058066 (x*n), A014217 (phi^n).

Programs

  • Maple
    seq(floor((1+sqrt(5)/2)^n), n=0..32);
  • Mathematica
    a[n_] := Floor[(GoldenRatio + 1/2)^n]; Array[a, 33, 0] (* Amiram Eldar, Dec 14 2021 *)
  • Python
    from sympy import floor, sqrt
    def A350092(n): return floor((1+sqrt(5)/2)**n) # Chai Wah Wu, Dec 17 2021