cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350115 Numbers p^2*q, p

Original entry on oeis.org

20, 52, 68, 116, 148, 164, 171, 212, 244, 292, 333, 356, 388, 404, 436, 452, 548, 596, 628, 657, 692, 724, 772, 788, 916, 932, 964, 981, 1028, 1076, 1108, 1124, 1143, 1172, 1252, 1268, 1348, 1396, 1412, 1467, 1492, 1556, 1588, 1604, 1629, 1636, 1684, 1732, 1791, 1796, 1828, 1844
Offset: 1

Views

Author

Bernard Schott, Dec 14 2021

Keywords

Comments

For these terms m, there are precisely 5 groups of order m, so this is a subsequence of A054397.
Two of them are abelian: C_{p^2*q}, C_q X C_p X C_p = C_q X (C_p)^2, and the three others that are nonabelian are C_q : (C_p x C_p), and two nonisomorphic semi-direct products C_q : C_p^2. Here C means cyclic groups of the stated order, the symbols X and : mean direct and semidirect products respectively.

Examples

			20 = 2^2*5 and 2^2 divides 5-1, hence 20 is a term.
171 = 3^2*19 and 3^2 divides 19-1, hence 171 is another term.
		

References

  • Pascal Ortiz, Exercices d'Algèbre, Collection CAPES / Agrégation, Ellipses, problème 1.35, pp. 70-74, 2004.

Crossrefs

Other subsequences of A054397: A030078, A079704, A143928.
Subsequence of A054753.

Programs

  • Mathematica
    q[n_] := Module[{f = FactorInteger[n], p, e}, p = f[[;; , 1]]; e = f[[;; , 2]]; e == {2, 1} && Divisible[p[[2]] - 1, p[[1]]^2]]; Select[Range[2000], q] (* Amiram Eldar, Dec 14 2021 *)
  • PARI
    isok(m) = {my(f=factor(m)); if (f[,2] == [2,1]~, my(p=f[1,1], q=f[2,1]); ((q-1) % p^2) == 0;);} \\ Michel Marcus, Dec 14 2021
    
  • Python
    from sympy import integer_nthroot, isprime, primerange
    def aupto(limit):
        aset, maxp = set(), integer_nthroot(limit, 4)[0]
        for p in primerange(1, maxp+1):
            m = p**2
            for t in range(m, limit//m, m):
                if isprime(t+1):
                    aset.add(p**2*(t+1))
        return sorted(aset)
    print(aupto(1844)) # Michael S. Branicky, Dec 14 2021

Extensions

More terms from Michel Marcus, Dec 14 2021