cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A350143 a(n) = Sum_{k=1..n} floor(n/(2*k-1))^2.

Original entry on oeis.org

1, 4, 10, 17, 27, 41, 55, 70, 93, 115, 137, 167, 193, 223, 267, 298, 332, 381, 419, 465, 525, 571, 617, 679, 738, 792, 868, 930, 988, 1080, 1142, 1205, 1297, 1367, 1459, 1560, 1634, 1712, 1820, 1914, 1996, 2120, 2206, 2300, 2450, 2544, 2638, 2764, 2875, 2996, 3136, 3246
Offset: 1

Views

Author

Seiichi Manyama, Dec 16 2021

Keywords

Crossrefs

Column 2 of A350122.

Programs

  • Mathematica
    a[n_] := Sum[Floor[n/(2*k - 1)]^2, {k, 1, n}]; Array[a, 50] (* Amiram Eldar, Dec 17 2021 *)
  • PARI
    a(n) = sum(k=1, n, (n\(2*k-1))^2);
    
  • PARI
    a(n) = sum(k=1, n, sumdiv(k, d, k/d%2*(2*d-1)));
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, (2*k-1)*x^k/(1-x^(2*k)))/(1-x))

Formula

a(n) = Sum_{k=1..n} Sum_{d|k, k/d odd} 2*d - 1 = Sum_{k=1..n} 2 * A002131(k) - A001227(k) = 2 * A350146(n) - A060831(n).
G.f.: (1/(1 - x)) * Sum_{k>=1} (2*k - 1) * x^k/(1 - x^(2*k)).

A350144 a(n) = Sum_{k=1..n} floor(n/(2*k-1))^3.

Original entry on oeis.org

1, 8, 28, 65, 127, 225, 353, 522, 759, 1037, 1369, 1803, 2273, 2827, 3539, 4260, 5078, 6095, 7123, 8301, 9709, 11103, 12623, 14449, 16312, 18270, 20614, 22920, 25358, 28338, 31130, 34107, 37627, 41001, 44761, 48976, 52974, 57200, 62136, 66986, 71908, 77720, 83140, 88854
Offset: 1

Views

Author

Seiichi Manyama, Dec 16 2021

Keywords

Crossrefs

Column 3 of A350122.
Cf. A007331.

Programs

  • Mathematica
    a[n_] := Sum[Floor[n/(2*k - 1)]^3, {k, 1, n}]; Array[a, 50] (* Amiram Eldar, Dec 17 2021 *)
  • PARI
    a(n) = sum(k=1, n, (n\(2*k-1))^3);
    
  • PARI
    a(n) = sum(k=1, n, sumdiv(k, d, k/d%2*(d^3-(d-1)^3)));
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, (k^3-(k-1)^3)*x^k/(1-x^(2*k)))/(1-x))

Formula

a(n) = Sum_{k=1..n} Sum_{d|k, k/d odd} d^3 - (d - 1)^3.
G.f.: (1/(1 - x)) * Sum_{k>=1} (k^3 - (k-1)^3) * x^k/(1 - x^(2*k)).

A350145 a(n) = Sum_{k=1..n} floor(n/(2*k-1))^n.

Original entry on oeis.org

1, 4, 28, 257, 3127, 46721, 823673, 16777474, 387440175, 10000060075, 285311849809, 8916117229571, 302875173709313, 11112007094026243, 437893920912819179, 18446744226340554502, 827240262649405488542, 39346408176856882188621
Offset: 1

Views

Author

Seiichi Manyama, Dec 16 2021

Keywords

Crossrefs

Main diagonal of A350122.
Cf. A350147.

Programs

  • Mathematica
    a[n_] := Sum[Floor[n/(2*k - 1)]^n, {k, 1, n}]; Array[a, 20] (* Amiram Eldar, Dec 17 2021 *)
  • PARI
    a(n) = sum(k=1, n, (n\(2*k-1))^n);
    
  • PARI
    a(n) = sum(k=1, n, sumdiv(k, d, k/d%2*(d^n-(d-1)^n)));

Formula

a(n) = Sum_{k=1..n} Sum_{d|k, k/d odd} d^n - (d - 1)^n.
a(n) = [x^n] (1/(1 - x)) * Sum_{k>=1} (k^n - (k - 1)^n) * x^k/(1 - x^(2*k)).
a(n) ~ n^n. - Vaclav Kotesovec, Dec 17 2021

A350161 Square array T(n,k), n >= 1, k >= 1, read by antidiagonals downwards, where T(n,k) = Sum_{j=1..n} (-1)^(j+1) * floor(n/(2*j-1))^k.

Original entry on oeis.org

1, 1, 2, 1, 4, 2, 1, 8, 8, 3, 1, 16, 26, 15, 5, 1, 32, 80, 63, 25, 5, 1, 64, 242, 255, 125, 33, 5, 1, 128, 728, 1023, 625, 209, 45, 6, 1, 256, 2186, 4095, 3125, 1281, 335, 60, 7, 1, 512, 6560, 16383, 15625, 7745, 2385, 504, 73, 9, 1, 1024, 19682, 65535, 78125, 46593, 16775, 4080, 703, 95, 9
Offset: 1

Views

Author

Seiichi Manyama, Dec 18 2021

Keywords

Examples

			Square array begins:
  1,  1,   1,    1,     1,      1,      1, ...
  2,  4,   8,   16,    32,     64,    128, ...
  2,  8,  26,   80,   242,    728,   2186, ...
  3, 15,  63,  255,  1023,   4095,  16383, ...
  5, 25, 125,  625,  3125,  15625,  78125, ...
  5, 33, 209, 1281,  7745,  46593, 279809, ...
  5, 45, 335, 2385, 16775, 117585, 823415, ...
		

Crossrefs

Columns k=1..3 give A014200, A350162, A350163.
T(n,n) gives A350164.

Programs

  • Mathematica
    T[n_, k_] := Sum[(-1)^(j + 1) * Floor[n/(2*j - 1)]^k, {j, 1, n}]; Table[T[k, n - k + 1], {n, 1, 11}, {k, 1, n}] // Flatten (* Amiram Eldar, Dec 18 2021 *)
  • PARI
    T(n, k) = sum(j=1, n, (-1)^(j+1)*(n\(2*j-1))^k);
    
  • PARI
    T(n, k) = sum(j=1, n, sumdiv(j, d, kronecker(-4, j/d)*(d^k-(d-1)^k)));

Formula

G.f. of column k: (1/(1 - x)) * Sum_{j>=1} (j^k - (j - 1)^k) * x^j/(1 + x^(2*j)).
T(n,k) = Sum_{j=1..n} Sum_{d|j} A101455(j/d) * (d^k - (d - 1)^k).
Showing 1-4 of 4 results.