cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350149 Triangle read by rows: T(n, k) = n^(n-k)*k!.

Original entry on oeis.org

1, 1, 1, 4, 2, 2, 27, 9, 6, 6, 256, 64, 32, 24, 24, 3125, 625, 250, 150, 120, 120, 46656, 7776, 2592, 1296, 864, 720, 720, 823543, 117649, 33614, 14406, 8232, 5880, 5040, 5040, 16777216, 2097152, 524288, 196608, 98304, 61440, 46080, 40320, 40320
Offset: 0

Views

Author

Robert B Fowler, Dec 27 2021

Keywords

Comments

T(n,k) are the denominators in a double summation power series for the definite integral of x^x. First expand x^x = exp(x*log(x)) = Sum_{n>=0} (x*log(x))^n/n!, then integrate each of the terms to get the double summation for F(x) = Integral_{t=0..x} t^t = Sum_{n>=1} (Sum_{k=0..n-1} (-1)^(n+k+1)*x^n*(log(x))^k/T(n,k)).
This is a definite integral, because lim {x->0} F(x) = 0.
The value of F(1) = 0.78343... = A083648 is known humorously as the Sophomore's Dream (see Borwein et al.).

Examples

			Triangle T(n,k) begins:
--------------------------------------------------------------------------
n/k         0        1       2       3      4      5      6      7      8
--------------------------------------------------------------------------
0  |        1,
1  |        1,       1,
2  |        4,       2,      2,
3  |       27,       9,      6,      6,
4  |      256,      64,     32,     24,    24,
5  |     3125,     625,    250,    150,   120,   120,
6  |    46656,    7776,   2592,   1296,   864,   720,   720,
7  |   823543,  117649,  33614,  14406,  8232,  5880,  5040,  5040,
8  | 16777216, 2097152, 524288, 196608, 98304, 61440, 46080, 40320, 40320.
...
		

References

  • Borwein, J., Bailey, D. and Girgensohn, R., Experimentation in Mathematics: Computational Paths to Discovery, A. K. Peters 2004.
  • William Dunham, The Calculus Gallery, Masterpieces from Newton to Lebesgue, Princeton University Press, Princeton NJ 2005.

Crossrefs

Cf. A000312 (first column), A000169 (2nd column), A003308 (3rd column excluding first term), A000142 (main diagonal), A000142 (2nd diagonal excluding first term), A112541 (row sums).
Values of the integral: A083648, A073009.

Programs

  • Magma
    A350149:= func< n,k | n^(n-k)*Factorial(k) >;
    [A350149(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 31 2022
    
  • Maple
    T := (n, k) -> n^(n - k)*k!:
    seq(seq(T(n, k), k = 0..n), n = 0..9); # Peter Luschny, Jan 07 2022
  • Mathematica
    T[n_, k_]:= n^(n-k)*k!; Table[T[n, k], {n, 0,12}, {k,0,n}]//Flatten (* Amiram Eldar, Dec 27 2021 *)
  • SageMath
    def A350149(n,k): return n^(n-k)*factorial(k)
    flatten([[A350149(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jul 31 2022

Formula

T(n, 0) = A000312(n).
T(n, 1) = A000169(n).
T(n, 2) = A003308(n), n >= 2.
Sum_{k=0..n} T(n, k) = A112541(n).
T(n, n) = A000142(n).
T(n, n-1) = A000142(n), n >= 1.
T(n,k) = A061711(n) * (n+1) / A350297(n+1,k). - Robert B Fowler, Jan 11 2022