A350149 Triangle read by rows: T(n, k) = n^(n-k)*k!.
1, 1, 1, 4, 2, 2, 27, 9, 6, 6, 256, 64, 32, 24, 24, 3125, 625, 250, 150, 120, 120, 46656, 7776, 2592, 1296, 864, 720, 720, 823543, 117649, 33614, 14406, 8232, 5880, 5040, 5040, 16777216, 2097152, 524288, 196608, 98304, 61440, 46080, 40320, 40320
Offset: 0
Examples
Triangle T(n,k) begins: -------------------------------------------------------------------------- n/k 0 1 2 3 4 5 6 7 8 -------------------------------------------------------------------------- 0 | 1, 1 | 1, 1, 2 | 4, 2, 2, 3 | 27, 9, 6, 6, 4 | 256, 64, 32, 24, 24, 5 | 3125, 625, 250, 150, 120, 120, 6 | 46656, 7776, 2592, 1296, 864, 720, 720, 7 | 823543, 117649, 33614, 14406, 8232, 5880, 5040, 5040, 8 | 16777216, 2097152, 524288, 196608, 98304, 61440, 46080, 40320, 40320. ...
References
- Borwein, J., Bailey, D. and Girgensohn, R., Experimentation in Mathematics: Computational Paths to Discovery, A. K. Peters 2004.
- William Dunham, The Calculus Gallery, Masterpieces from Newton to Lebesgue, Princeton University Press, Princeton NJ 2005.
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
- Eric Weisstein's World of Mathematics, Sophomore's dream
- Wikipedia, Sophomore's dream
Crossrefs
Programs
-
Magma
A350149:= func< n,k | n^(n-k)*Factorial(k) >; [A350149(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 31 2022
-
Maple
T := (n, k) -> n^(n - k)*k!: seq(seq(T(n, k), k = 0..n), n = 0..9); # Peter Luschny, Jan 07 2022
-
Mathematica
T[n_, k_]:= n^(n-k)*k!; Table[T[n, k], {n, 0,12}, {k,0,n}]//Flatten (* Amiram Eldar, Dec 27 2021 *)
-
SageMath
def A350149(n,k): return n^(n-k)*factorial(k) flatten([[A350149(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jul 31 2022
Comments