cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A350402 Numbers k such that binomial(k, 2) divides binomial(2^k-2, 2).

Original entry on oeis.org

2, 3, 7, 11, 19, 31, 43, 127, 163, 211, 271, 311, 331, 379, 487, 571, 631, 811, 883, 991, 1459, 1471, 1747, 2311, 2531, 2647, 2791, 2971, 3079, 3631, 3943, 4091, 5171, 5419, 6571, 7591, 8863, 8911, 9199, 9791, 9931, 10891, 11827, 11971, 13591, 14407, 15391, 16759, 17011, 18523, 19531, 21871, 22111, 23431, 24967
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Dec 29 2021

Keywords

Comments

Conjecture: aside from the first term, this is a subsequence of A094179 (numbers congruent to 3 mod 4 which are divisible only by primes congruent to 3 mod 4).
The conjecture is false: a(2295) = 508606771 = 19531 * 26041 is not in A094179, nor even A004614. - Charles R Greathouse IV, Jan 22 2022

Crossrefs

Supersequence of A069051.
Cf. A069051 (binomial(k,2) divides binomial(2^k-1, 2)?), A094179, A350176.

Programs

  • Magma
    [n: n in [2..25000] |  IsZero(Binomial(2^n-2, 2) mod Binomial(n, 2))];
    
  • Mathematica
    Select[Range[2, 25000], Divisible[Binomial[2^# - 2, 2], Binomial[#,2]] &] (* Amiram Eldar, Dec 29 2021 *)
  • PARI
    isok(n) = (n>1) && ((binomial(2^n-2, 2) % binomial(n, 2)) == 0); \\ Michel Marcus, Jan 04 2022
    
  • PARI
    is(n)=my(m=n^2-n,t=Mod(2,m)^n-2); t*(t-1)==0 \\ Charles R Greathouse IV, Jan 20 2022

A350905 Numbers k such that binomial(k, 3) divides binomial(3^k-3, 2).

Original entry on oeis.org

3, 5, 17, 37, 79, 101, 257, 14401, 44101, 47881, 57601, 65537, 677041, 1354081, 2031121, 3766141, 7812169, 8122501, 17907121, 18671941, 19676161, 21381361, 29615041, 30115009, 65246161, 105557761, 144406081, 181254529, 217039681, 242235841, 263062801, 277032001
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jan 21 2022

Keywords

Comments

Are all terms prime numbers?
Conjecture: all terms of the intersection with A350176 are prime numbers.

Crossrefs

Supersequence of A019434.

Programs

  • Magma
    [n: n in [3..10^4] |  IsZero(Binomial(3^n-3, 2) mod Binomial(n, 3))];
    
  • Mathematica
    Select[Range[3, 70000], Divisible[Binomial[3^# - 3, 2], Binomial[#, 3]] &] (* Amiram Eldar, Jan 21 2022 *)
  • PARI
    is(k) = if(k>2, my(m=Mod(3, (k^3+2*k)/3-k^2)^k);  m^2-7*m+12==0); \\ Jinyuan Wang, Jan 22 2022

Extensions

More terms from Jinyuan Wang, Jan 22 2022
Showing 1-2 of 2 results.