cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350178 Take n and subtract the greatest square less than or equal to n. Repeat this process until 0 is reached. a(n) is the sum of all residues after subtractions.

Original entry on oeis.org

0, 0, 1, 3, 0, 1, 3, 6, 4, 0, 1, 3, 6, 4, 6, 9, 0, 1, 3, 6, 4, 6, 9, 13, 12, 0, 1, 3, 6, 4, 6, 9, 13, 12, 9, 11, 0, 1, 3, 6, 4, 6, 9, 13, 12, 9, 11, 14, 18, 0, 1, 3, 6, 4, 6, 9, 13, 12, 9, 11, 14, 18, 17, 20, 0, 1, 3, 6, 4, 6, 9, 13, 12, 9, 11, 14, 18, 17, 20, 24, 16, 0, 1, 3, 6, 4, 6, 9, 13
Offset: 0

Views

Author

Thomas Scheuerle, Dec 18 2021

Keywords

Comments

Let s_1,s_2,s_3,...,s_m be the greedy partition of n into squares (n = s_1+s_2+s_3+...+s_m) such that s_1 >= s_2 >= s_3 >= ... >= s_m then a(n) = 0*s_1 + 1*s_2 + 2*s_3 + ... + (m-1)*s_m.
This sequence contains only numbers which can be written in the form c_1^2 + 2*c_2^2 + ... + m*c_m^2 with c_1 >= c_2 >= c_m. This excludes 2,5,7,8,... .

Examples

			a(41): 41 - 6^2 = 5; 5 - 2^2 = 1; 1 - 1^2 = 0 -> 5+1 = 6 = a(41).
		

Crossrefs

Programs

  • Mathematica
    Table[Total[Rest[NestWhileList[#-Floor[Sqrt[#]]^2&,n,#>0&]]],{n,0,90}] (* Harvey P. Dale, Apr 27 2025 *)
  • PARI
    A350178(n)={my(r=0); while(n-=sqrtint(n)^2, r+=n); r};

Formula

a(n) = n - r^2 + a(n - r^2) = a(n - r^2 + (b + r)^2) = a(n + b^2 + 2*b*r), r = floor(sqrt(n)), for any b >= 0. True because a(n) depends only on the distance to the next square <= n.
a(n) = Sum_{k>0} A053186^k(n).