A350201 a(n) is the smallest prime p such that the Hankel matrix of the 2*n-1 consecutive primes starting at p is singular; a(n) = 0 if no such p exists.
23, 2, 25771, 74159, 245333129, 245333113
Offset: 3
Examples
Example | | | vector in the kernel n | a(n) | primepi(a(n)) | of the Hankel matrix --+-----------+---------------+------------------------------ 3 | 23 | 9 | (7, 3, -8) 4 | 2 | 1 | (6, -3, -2, 1) 5 | 25771 | 2838 | (1, -2, 2, -2, 1) 6 | 74159 | 7315 | (1, -2, 1, 1, -2, 1) 7 | 245333129 | 13437898 | (0, 0, 0, 1, -3, 3, -1) 8 | 245333113 | 13437897 | (0, 0, 0, 0, 1, -3, 3, -1) For n = 3, the relation 7*prime(j) + 3*prime(j+1) - 8*prime(j+2) = 0 holds for 9 <= j <= 11, i.e., 7*23 + 3*29 - 8*31 = 0, 7*29 + 3*31 - 8*37 = 0, 7*31 + 3*37 - 8*41 = 0. The ten prime gaps following prime(13437901) = 245333213 are 20, 18, 16, 14, 12, 10, 8, 6, 4, 2 (see A349642). This gives both a(7) = prime(13437898) and a(8) = prime(13437897).
Links
- Wikipedia, Hankel matrix
Programs
-
Python
from sympy import prime,nextprime,Matrix def A350201(n): p = [prime(j) for j in range(1,2*n)] while Matrix(n,n,lambda i,j:p[i+j]).det(): del p[0] p.append(nextprime(p[-1])) return p[0]
Comments