A350212 Number T(n,k) of endofunctions on [n] with exactly k isolated fixed points; triangle T(n,k), n >= 0, 0 <= k <= n, read by rows.
1, 0, 1, 3, 0, 1, 17, 9, 0, 1, 169, 68, 18, 0, 1, 2079, 845, 170, 30, 0, 1, 31261, 12474, 2535, 340, 45, 0, 1, 554483, 218827, 43659, 5915, 595, 63, 0, 1, 11336753, 4435864, 875308, 116424, 11830, 952, 84, 0, 1, 262517615, 102030777, 19961388, 2625924, 261954, 21294, 1428, 108, 0, 1
Offset: 0
Examples
T(3,1) = 9: 122, 133, 132, 121, 323, 321, 113, 223, 213. Triangle T(n,k) begins: 1; 0, 1; 3, 0, 1; 17, 9, 0, 1; 169, 68, 18, 0, 1; 2079, 845, 170, 30, 0, 1; 31261, 12474, 2535, 340, 45, 0, 1; 554483, 218827, 43659, 5915, 595, 63, 0, 1; 11336753, 4435864, 875308, 116424, 11830, 952, 84, 0, 1; ...
Links
- Alois P. Heinz, Rows n = 0..140, flattened
Crossrefs
Programs
-
Maple
g:= proc(n) option remember; add(n^(n-j)*(n-1)!/(n-j)!, j=1..n) end: b:= proc(n, m) option remember; `if`(n=0, x^m, add(g(i)* b(n-i, m+`if`(i=1, 1, 0))*binomial(n-1, i-1), i=1..n)) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, 0)): seq(T(n), n=0..10); # second Maple program: A350212 := (n,k)-> add((-1)^(j-k)*binomial(j,k)*binomial(n,j)*(n-j)^(n-j), j=0..n): seq(print(seq(A350212(n, k), k=0..n)), n=0..9); # Mélika Tebni, Nov 24 2022
-
Mathematica
g[n_] := g[n] = Sum[n^(n - j)*(n - 1)!/(n - j)!, {j, 1, n}]; b[n_, m_] := b[n, m] = If[n == 0, x^m, Sum[g[i]* b[n - i, m + If[i == 1, 1, 0]]*Binomial[n - 1, i - 1], {i, 1, n}]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, 0]]; Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Mar 11 2022, after Alois P. Heinz *)
Formula
Sum_{k=0..n} k * T(n,k) = A055897(n).
Sum_{k=1..n} T(n,k) = A350134(n).
From Mélika Tebni, Nov 24 2022: (Start)
T(n,k) = binomial(n, k)*|A069856(n-k)|.
E.g.f. column k: exp(-x)*x^k / ((1 + LambertW(-x))*k!).
T(n,k) = Sum_{j=0..n} (-1)^(j-k)*binomial(j, k)*binomial(n, j)*(n-j)^(n-j). (End)