A350247 Positive integers k such that the concatenation of k and 11 is the lesser of a pair of twin primes (i.e., a term of A001359).
3, 21, 27, 72, 90, 126, 183, 189, 192, 210, 216, 261, 267, 300, 315, 324, 342, 345, 360, 378, 387, 414, 477, 483, 540, 567, 633, 672, 681, 687, 714, 717, 744, 750, 777, 798, 828, 861, 870, 888, 918, 939, 987, 1011, 1029, 1038, 1080, 1182, 1260, 1266, 1281
Offset: 1
Examples
311, 2111, 2711, 7211, and 9011 are terms of A001359.
Programs
-
Maple
terms := proc(n) local k, p, L: k, L := 0, []: while numelems(L) < n do k := k+1: p := parse(cat(k, 11)): if isprime(p) and isprime(p+2) then L := [op(L), k]: fi: od: L: end:
-
Mathematica
Select[Range[1282], AllTrue[# + {0, 2}, PrimeQ] &[100 # + 11] &] (* Michael De Vlieger, Dec 21 2021 *)
-
Python
from itertools import count, islice from sympy import isprime def A350247_gen(startvalue=3): # generator of terms >= startvalue for n in count(max(3,startvalue+(3-startvalue%3)%3),3): if isprime(100*n+11) and isprime(100*n+13): yield n A350247_list = list(islice(A350247_gen(),20)) # Chai Wah Wu, Jan 20 2022
Comments