A350248 Triangle read by rows: T(n,k) is the number of noncrossing partitions of an n-set into k blocks of size 3 or more, n >= 0, 0 <= k <= floor(n/3).
1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 3, 0, 1, 7, 0, 1, 12, 0, 1, 18, 12, 0, 1, 25, 45, 0, 1, 33, 110, 0, 1, 42, 220, 55, 0, 1, 52, 390, 286, 0, 1, 63, 637, 910, 0, 1, 75, 980, 2275, 273, 0, 1, 88, 1440, 4900, 1820, 0, 1, 102, 2040, 9520, 7140, 0, 1, 117, 2805, 17136, 21420, 1428
Offset: 0
Examples
Triangle begins: 1; 0; 0; 0, 1; 0, 1; 0, 1; 0, 1, 3; 0, 1, 7; 0, 1, 12; 0, 1, 18, 12; 0, 1, 25, 45; 0, 1, 33, 110; 0, 1, 42, 220, 55; 0, 1, 52, 390, 286; 0, 1, 63, 637, 910; 0, 1, 75, 980, 2275, 273; 0, 1, 88, 1440, 4900, 1820; 0, 1, 102, 2040, 9520, 7140; ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1750 (rows 0..100)
Crossrefs
Programs
-
PARI
T(n)={my(p=1+O(x^3)); for(i=1, n\3, p=1+y*(x*p)^3/(1-x*p)); [Vecrev(t)| t<-Vec(p + O(x*x^n))]} {my(A=T(12)); for(i=1, #A, print(A[i]))}
-
PARI
T(n,k) = if(n==0 || k>n\3, k==0, binomial(n+1, n-k+1) * binomial(n-2*k-1, k-1) / (n+1)) \\ Andrew Howroyd, Dec 31 2021
Formula
G.f.: A(x,y) satisfies A(x,y) = 1 + y*(x*A(x,y))^3/(1 - x*A(x,y)).
T(n,k) = binomial(n+1, n-k+1) * binomial(n-2*k-1, k-1) / (n+1) for n > 0.