cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350249 a(n) is the constant term in expansion of Product_{k=1..n} (x^(k^2) + 1 + 1/x^(k^2)).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 7, 19, 43, 95, 189, 429, 1003, 2457, 6319, 16165, 41601, 107969, 280253, 737065, 1950865, 5201941, 13954313, 37593679, 101695957, 276296549, 753191093, 2061201397, 5658850121, 15583938539, 43040609115, 119182143639, 330841253283, 920550527585
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 28 2022

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1,
          expand((x^(n^2)+1+1/x^(n^2))*b(n-1)))
        end:
    a:= n-> coeff(b(n),x,0):
    seq(a(n), n=0..33);  # Alois P. Heinz, Jan 28 2022
  • Mathematica
    Table[Coefficient[Product[x^(k^2) + 1 + 1/x^(k^2), {k, 1, n}], x, 0], {n, 0, 30}] (* Vaclav Kotesovec, Feb 05 2022 *)

Formula

Conjecture: a(n) ~ sqrt(5) * 3^(n + 1/2) / (2*sqrt(Pi)*n^(5/2)). - Vaclav Kotesovec, Feb 04 2022