cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A350305 a(n) is the constant term in the expansion of Product_{k=1..n} (x^k + 1 + 1/x^k)^n.

Original entry on oeis.org

1, 1, 13, 1437, 1884211, 24657701475, 3111336932350947, 3710920324904591897521, 41323213770479673319301068309, 4261037235228828189774620497534270303, 4045313784246510024420372971256850718016451185
Offset: 0

Views

Author

Seiichi Manyama, Dec 23 2021

Keywords

Comments

a(n) is the coefficient of x^(n^2 * (n+1)/2) in Product_{k=0..n} (1 + x^k + x^(2*k))^n.

Crossrefs

Programs

  • Maple
    f:= n -> coeff(mul(x^k+1+1/x^k,k=1..n)^n,x,0):
    map(f, [$0..12]); # Robert Israel, Jan 15 2023
  • Mathematica
    a[n_] := Coefficient[Series[Product[(x^k + 1 + 1/x^k)^n, {k, 1, n}], {x, 0, 0}], x, 0]; Array[a, 11, 0] (* Amiram Eldar, Dec 24 2021 *)
  • PARI
    a(n) = polcoef(prod(k=1, n, x^k+1+1/x^k)^n, 0);
    
  • PARI
    a(n) = polcoef(prod(k=1, n, 1+x^k+x^(2*k))^n, n^2*(n+1)/2);

A350308 a(n) is the constant term in the expansion of Product_{j=1..n} (Sum_{k=-j..j} x^k)^j.

Original entry on oeis.org

1, 1, 13, 2431, 10027503, 1107781071903, 3893880730064443963, 506016205547402043327062969, 2774765502272595019563619139799271431, 722310089115924894687149792741562790592722949523
Offset: 0

Views

Author

Seiichi Manyama, Dec 23 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Coefficient[Series[Product[Sum[x^k, {k, -j, j}]^j, {j, 1, n}], {x, 0, 0}], x, 0]; Array[a, 10, 0] (* Amiram Eldar, Dec 24 2021 *)
  • PARI
    a(n) = polcoef(prod(j=1, n, sum(k=-j, j, x^k)^j), 0);
Showing 1-2 of 2 results.