cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A340423 Irregular triangle read by rows T(n,k) in which row n has length A000041(n-1) and every column k is A024916, n >= 1, k >= 1.

Original entry on oeis.org

1, 4, 8, 1, 15, 4, 1, 21, 8, 4, 1, 1, 33, 15, 8, 4, 4, 1, 1, 41, 21, 15, 8, 8, 4, 4, 1, 1, 1, 1, 56, 33, 21, 15, 15, 8, 8, 4, 4, 4, 4, 1, 1, 1, 1, 69, 41, 33, 21, 21, 15, 15, 8, 8, 8, 8, 4, 4, 4, 4, 1, 1, 1, 1, 1, 1, 1, 87, 56, 41, 33, 33, 21, 21, 15, 15, 15, 15, 8, 8, 8, 8
Offset: 1

Views

Author

Omar E. Pol, Jan 07 2021

Keywords

Comments

T(n,k) is the number of cubic cells (or cubes) in the k-th level starting from the base of the tower described in A221529 whose largest side of the base is equal to n (see example). - Omar E. Pol, Jan 08 2022

Examples

			Triangle begins:
   1;
   4;
   8,  1;
  15,  4,  1;
  21,  8,  4,  1,  1;
  33, 15,  8,  4,  4,  1,  1;
  41, 21, 15,  8,  8,  4,  4, 1, 1, 1, 1;
  56, 33, 21, 15, 15,  8,  8, 4, 4, 4, 4, 1, 1, 1, 1;
  69, 41, 33, 21, 21, 15, 15, 8, 8, 8, 8, 4, 4, 4, 4, 1, 1, 1, 1, 1, 1, 1;
...
For n = 9 the length of row 9 is A000041(9-1) = 22.
From _Omar E. Pol_, Jan 08 2022: (Start)
For n = 9 the lateral view and top view of the tower described in A221529 look like as shown below:
                        _
    22        1        | |
    21        1        | |
    20        1        | |
    19        1        | |
    18        1        | |
    17        1        | |
    16        1        |_|_
    15        4        |   |
    14        4        |   |
    13        4        |   |
    12        4        |_ _|_
    11        8        |   | |
    10        8        |   | |
     9        8        |   | |
     8        8        |_ _|_|_
     7       15        |     | |
     6       15        |_ _ _| |_
     5       21        |     |   |
     4       21        |_ _ _|_ _|_
     3       33        |_ _ _ _| | |_
     2       41        |_ _ _ _|_|_ _|_ _
     1       69        |_ _ _ _ _|_ _|_ _|
.
   Level   Row 9         Lateral view
     k     T(9,k)        of the tower
.
                        _ _ _ _ _ _ _ _ _
                       |_| | | | | | |   |
                       |_ _|_| | | | |   |
                       |_ _|  _|_| | |   |
                       |_ _ _|    _|_|   |
                       |_ _ _|  _|    _ _|
                       |_ _ _ _|     |
                       |_ _ _ _|  _ _|
                       |         |
                       |_ _ _ _ _|
.
                           Top view
                         of the tower
.
For n = 9 and k = 1 there are 69 cubic cells in the level 1 starting from the base of the tower, so T(9,1) = 69.
For n = 9 and k = 22 there is only one cubic cell in the level 22 (the top) of the tower, so T(9,22) = 1.
The volume of the tower (also the total number of cubic cells) represents the 9th term of the convolution of A000203 and A000041 hence it's equal to A066186(9) = 270, equaling the sum of the 9th row of triangle. (End)
		

Crossrefs

Row sums give A066186.
Row lengths give A000041.
The length of the m-th block in row n is A187219(m), m >= 1.
Cf. A350637 (analog for the stepped pyramid described in A245092).

Programs

  • PARI
    f(n) = numbpart(n-1);
    T(n, k) = {if (k > f(n), error("invalid k")); if (k==1, return (n)); my(s=0); while (k <= f(n-1), s++; n--; ); 1+s; } \\ A336811
    g(n) = sum(k=1, n, n\k*k); \\ A024916
    row(n) = vector(f(n), k, g(T(n,k))); \\ Michel Marcus, Jan 22 2022

Formula

T(n,k) = A024916(A336811(n,k)).
T(n,k) = Sum_{j=1..n} A339278(j,k). - Omar E. Pol, Jan 08 2022

A350357 Irregular triangle read by rows in which row n lists all elements of the arrangement of the correspondence divisor/part related to the last section of the set of partitions of n in the following order: row n lists the n-th row of A138121 followed by the n-th row of A336812.

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 3, 1, 4, 2, 2, 1, 1, 1, 1, 2, 4, 1, 2, 1, 5, 3, 2, 1, 1, 1, 1, 1, 1, 5, 1, 3, 1, 2, 1, 1, 6, 3, 3, 4, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 6, 1, 2, 4, 1, 3, 1, 2, 1, 2, 1, 1, 7, 4, 3, 5, 2, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Omar E. Pol, Dec 26 2021

Keywords

Examples

			Triangle begins:
[1], [1];
[2, 1], [1, 2];
[3, 1, 1], [1, 3, 1];
[4, 2, 2, 1, 1, 1], [1, 2, 4, 1, 2, 1];
[5, 3, 2, 1, 1, 1, 1, 1], [1, 5, 1, 3, 1, 2, 1, 1];
...
Illustration of the first six rows of triangle in an infinite table:
|---|---------|-----|-------|---------|-----------|-------------|---------------|
| n |         |  1  |   2   |    3    |     4     |      5      |       6       |
|---|---------|-----|-------|---------|-----------|-------------|---------------|
|   |         |     |       |         |           |             |  6            |
|   |         |     |       |         |           |             |  3 3          |
|   |         |     |       |         |           |             |  4 2          |
| P |         |     |       |         |           |             |  2 2 2        |
| A |         |     |       |         |           |  5          |    1          |
| R |         |     |       |         |           |  3 2        |      1        |
| T |         |     |       |         |  4        |    1        |      1        |
| S |         |     |       |         |  2 2      |      1      |        1      |
|   |         |     |       |  3      |    1      |      1      |        1      |
|   |         |     |  2    |    1    |      1    |        1    |          1    |
|   |         |  1  |    1  |      1  |        1  |          1  |            1  |
|---|---------|-----|-------|---------|-----------|-------------|---------------|
| D | A027750 |  1  |  1 2  |  1   3  |  1 2   4  |  1       5  |  1 2 3     6  |
| I | A027750 |     |       |  1      |  1 2      |  1   3      |  1 2   4      |
| V | A027750 |     |       |         |  1        |  1 2        |  1   3        |
| I | A027750 |     |       |         |           |  1          |  1 2          |
| S | A027750 |     |       |         |           |  1          |  1 2          |
| O | A027750 |     |       |         |           |             |  1            |
| R | A027750 |     |       |         |           |             |  1            |
| S |         |     |       |         |           |             |               |
|---|---------|-----|-------|---------|-----------|-------------|---------------|
.
For n = 6 in the upper zone of the above table we can see the parts of the last section of the set of partitions of 6 in reverse-colexicographic order in accordance with the 6th row of A138121.
In the lower zone of the table we can see the terms from the 6th row of A336812, these are the divisors of the numbers from the 6th row of A336811.
Note that in the lower zone of the table every row gives A027750.
The remarkable fact is that the elements in the lower zone of the arrangement are the same as the elements in the upper zone but in other order.
For an explanation of the connection of the elements of the upper zone with the elements of the lower zone, that is the correspondence divisor/part, see A336812 and A338156.
The growth of the upper zone of the table is in accordance with the growth of the modular prism described in A221529.
The growth of the lower zone of the table is in accordance with the growth of the tower described also in A221529.
The number of cubic cells added at n-th stage in each polycube is equal to A138879(10) = 150, hence the total number of cubic cells added at n-th stage is equal to 2*A138879(10) = 300, equaling the sum of the 10th row of this triangle.
		

Crossrefs

Companion of A350333.
Row sums give 2*A138879.
Row lengths give 2*A138137.
Showing 1-2 of 2 results.