A350340 a(n) is the smallest k such that k^2 is an abelian order with precisely 2^n groups.
1, 2, 35, 595, 13685, 506345, 26836285, 1702480351, 80016576497, 5681176931287, 414725915983951, 40228413850443247, 4304440281997427429, 546663915813673283483, 75986284298100586404137, 10144780646398552482233711, 1511572316313384319852822939, 252432576824335181415421430813, 49729217634394030738838021870161
Offset: 0
Examples
a(2) = 35 = 5*7 since the smallest k with 2 distinct prime factors such that k^2 is an abelian order is 35. a(3) = 595 = 5*7*17 since the smallest k with 3 distinct prime factors such that k^2 is an abelian order is 595.
Links
- David A. Corneth, Table of n, a(n) for n = 0..30
- David A. Corneth, PARI program
Programs
-
PARI
isA051532(n) = my(f=factor(n), v=vector(#f[, 1])); for(i=1, #v, if(f[i, 2]>2, return(0), v[i]=f[i, 1]^f[i, 2])); for(i=1, #v, for(j=i+1, #v, if(v[i]%f[j, 1]==1 || v[j]%f[i, 1]==1, return(0)))); 1 \\ Charles R Greathouse IV's program for A051532 a(n) = for(k=1, oo, if(issquarefree(k) && omega(k)==n && isA051532(k^2), return(k)))
Formula
A350341(n) = a(n)^2.
Extensions
a(7)-a(18) from David A. Corneth, Jan 02 2022
Comments