A350341 a(n) is the smallest abelian order with precisely 2^n groups.
1, 4, 1225, 354025, 187279225, 256385259025, 720186192601225, 2898439345541083201, 6402652514300252791009, 32275771324587574319476369, 171997585388727183548489570401, 1618325280922534070007738367903009, 18528206141282092567518596574121550041, 298841436852738871021507444144006480611289
Offset: 0
Examples
a(2) = 1225 = 35^2 since the smallest square number with 2 distinct prime factors that is an abelian order is 1225. a(3) = 354025 = 595^2 since the smallest square number with 3 distinct prime factors that is an abelian order is 354025.
Links
- David A. Corneth, Table of n, a(n) for n = 0..18
Programs
-
PARI
isA051532(n) = my(f=factor(n), v=vector(#f[, 1])); for(i=1, #v, if(f[i, 2]>2, return(0), v[i]=f[i, 1]^f[i, 2])); for(i=1, #v, for(j=i+1, #v, if(v[i]%f[j, 1]==1 || v[j]%f[i, 1]==1, return(0)))); 1 \\ Charles R Greathouse IV's program for A051532 a(n) = for(k=1, oo, if(issquarefree(k) && omega(k)==n && isA051532(k^2), return(k^2)))
Formula
a(n) = A350340(n)^2.
Extensions
a(7)-a(11) from David A. Corneth, Jan 02 2022
Comments