A350378
Integer areas of integer-sided triangles such that the distance d between the incenter and the circumcenter is a prime number.
Original entry on oeis.org
48, 768, 3840, 108000, 1134000, 200202240, 4382077920
Offset: 1
- Mohammad K. Azarian, Circumradius and Inradius, Problem S125, Math Horizons, Vol. 15, Issue 4, April 2008, p. 32.
- R. A. Johnson, Modern Geometry: An Elementary Treatise on the Geometry of the Triangle and the Circle. Boston, MA: Houghton Mifflin, 1929.
-
nn=520; lst={};Do[s=(a+b+c)/2;If[IntegerQ[s],area2=s (s-a)(s-b)(s-c); If[area2>0&&IntegerQ[Sqrt[area2]]&&PrimeQ[Sqrt[a*b*c/(4*Sqrt[area2])*(a*b*c/(4*Sqrt[area2])-2*Sqrt[area2]/s)]],Print[Sqrt[area2]," ",c," ",b," ",a," ",Sqrt[area2]/s," ",a*b*c/(4*Sqrt[area2])," ",Sqrt[a*b*c/(4*Sqrt[area2])*(a*b*c/(4*Sqrt[area2])-2*Sqrt[area2]/s)]]]],{a,nn},{b,a},{c,b}]
A352314
Primitive triples (a, b, c) of integer-sided triangles such that the distance d = OI between the circumcenter O and the incenter I is also a positive integer. The triples of sides (a, b, c) are in increasing order a <= b <= c.
Original entry on oeis.org
10, 10, 16, 40, 40, 48, 16, 49, 55, 80, 104, 104, 15, 169, 176, 130, 130, 240, 231, 361, 416, 246, 246, 480, 272, 272, 480, 480, 510, 510, 296, 296, 560, 350, 350, 672, 455, 961, 1104, 672, 1200, 1200, 259, 1040, 1221, 1040, 1369, 1551, 1160, 1160, 1680, 1218, 1218, 1680
Offset: 1
The table begins:
10, 10, 16;
40, 40, 48;
16, 49, 55;
80, 104, 104;
15, 169, 176;
130, 130, 240;
231, 361, 416;
.........
For first triple (10, 10, 16), s = (10+10+16)/2 = 18, A = 48, r = 48/18 = 8/3, R = 10*10*16/4*48 = 25/3, and d = sqrt(25/3 * 9/3) = 5. We observe that gcd(10, 10, 16) = 2, but that gcd(10, 10, 16, 5) = 1, in fact for triple (5, 5, 8) with gcd(5, 5, 8) = 1, OI should be 5/2.
A352315
a(n) is the distance d between the incenter I and the circumcenter O of the integer-sided triangle whose sides correspond to the n-th primitive triple of A352314.
Original entry on oeis.org
5, 5, 21, 13, 91, 143, 95, 533, 221, 17, 407, 575, 341, 275, 703, 259, 377, 319, 53, 559, 4181, 793, 481, 3599, 715, 784, 943, 1955, 3965, 549, 7055, 6815, 2144, 1961
Offset: 1
a(1) = 5 because with the smallest triple (10, 10, 16), we get s = (10+10+16)/2 = 18, A = 48, r = 48/18 = 8/3, R = (10*10*16)/(4*48) = 25/3, and d = sqrt(25/3 * 9/3) = 5 is an integer.
a(2) = 5 also because with the second triple (40, 40, 48), we get s = (40+40+48)/2 = 64, A = 768, r = 768/64 = 12, R = (40*40*48)/(4*768) = 25, and d = sqrt(25*(25-24)) = 5.
a(3) = 21 because with the third triple (16, 49, 55) that is the first triangle not isosceles, we get s = (16+49+55)/2 = 60, A = 220*sqrt(3), r = 11*sqrt(3)/3, R = (16*49*55)/(4*220*sqrt(3)) = 49*sqrt(3)/3, and d = sqrt(49^2/3 - (2*11*49)/3) = 21.
-
lista(nn) = my(d, s); for(c=2, nn, for(b=1+c\2, c, for(a=1+c-b, b, s=(a+b+c)/2; if(denominator(d=a^2*b^2*c^2/16/s/(s-a)/(s-b)/(s-c)-a*b*c/2/s) == 1 && issquare(d) && gcd([a, b, c, d=sqrtint(d)]) == 1, print1(d, ", "))))); \\ Jinyuan Wang, Mar 15 2022
a(8) inserted by and a(12)-a(34) from
Jinyuan Wang, Mar 15 2022
A352316
Perimeter of primitive integer-sided triangles such that the distance d = OI between the circumcenter O and the incenter I is also a positive integer.
Original entry on oeis.org
36, 128, 120, 288, 360, 500, 1008, 972, 1024, 1500, 1152, 1372, 2520, 3072, 2520, 3960, 4000, 4116, 4860, 5040, 4500, 5760, 6860, 5324, 6804, 6435, 8000, 7776, 8192, 10920, 8788, 9216, 10395, 10976
Offset: 1
a(1) = 36 because the smallest triple is (10, 10, 16) with corresponding d = OI = A352315(1) = 5.
Showing 1-4 of 4 results.
Comments