cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350387 a(n) is the sum of the odd exponents in the prime factorization of n.

Original entry on oeis.org

0, 1, 1, 0, 1, 2, 1, 3, 0, 2, 1, 1, 1, 2, 2, 0, 1, 1, 1, 1, 2, 2, 1, 4, 0, 2, 3, 1, 1, 3, 1, 5, 2, 2, 2, 0, 1, 2, 2, 4, 1, 3, 1, 1, 1, 2, 1, 1, 0, 1, 2, 1, 1, 4, 2, 4, 2, 2, 1, 2, 1, 2, 1, 0, 2, 3, 1, 1, 2, 3, 1, 3, 1, 2, 1, 1, 2, 3, 1, 1, 0, 2, 1, 2, 2, 2, 2, 4, 1, 2, 2, 1, 2, 2, 2, 6, 1, 1, 1, 0, 1, 3, 1, 4, 3
Offset: 1

Views

Author

Amiram Eldar, Dec 28 2021

Keywords

Comments

First differs from A125073 at n = 32.
a(n) is the number of prime divisors of n, counted with multiplicity, with an odd exponent in the prime factorization of n.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], e, 0]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = my(f=factor(n)); sum(k=1, #f~, if (f[k,2] %2, f[k,2])); \\ Michel Marcus, Dec 28 2021
  • Python
    from sympy import factorint
    def a(n): return sum(e for e in factorint(n).values() if e%2 == 1)
    print([a(n) for n in range(1, 106)]) # Michael S. Branicky, Dec 28 2021
    

Formula

Additive with a(p^e) = e if e is odd and 0 otherwise.
a(n) = A001222(A350389(n)).
a(n) = 0 if and only if n is a positive square (A000290 \ {0}).
a(n) = A001222(n) - A350386(n).
a(n) = A001222(n) if and only if n is an exponentially odd number (A268335).
Sum_{k=1..n} a(k) = n * log(log(n)) + c * n + O(n/log(n)), where c = A083342 - Sum_{p prime} 2*p/((p-1)*(p+1)^2) = gamma + Sum_{p prime} (log(1-1/p) + (p^2+1)/((p-1)*(p+1)^2)) = 0.2384832800... and gamma is Euler's constant (A001620).